LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1100114-v1

Advanced LIGO

Advanced LIGO I&Q RF Demodulator Test Procedure

Two channel high bandwidth variant

Richard Abbott, Daniel Sigg

Distribution of this document: LIGO Scientific Collaboration

This is an internal working note of the LIGO Laboratory.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125

Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Richland WA 99352

Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139

> Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

P.O. Box 940
Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

1 Overview

This test procedure applies to I&Q demodulator circuit board <u>D0902745-v3</u> contained within chassis assembly <u>D1000181</u>. This variant of the demodulator has been modified for high bandwidth according to <u>E1100044</u>. A block diagram of the I&Q RF demodulator circuit board common to both variants is shown in Figure 1. Two such demodulator cells are packaged in one chassis. Refer to <u>T1000044</u> for principles of operation.

Figure 1 I&O Demodulator Circuit Block Diagram

2 Testing

Each production chassis must be functionally tested and the results recorded in Section 4. Unless otherwise noted, the local oscillator level applied to the rear of the chassis is set to $+10 \, \mathrm{dBm}$, $\pm 0.2 \, \mathrm{dBm}$ for all RF measurements. It is assumed that the person using this procedure is familiar with RF Network Analyzers, Dynamic Signal Analyzers, and rudimentary test equipment including oscilloscopes and multimeters.

Serial Number Data

• Record all serial number data in Table 1

DC Tests

Apply ±24VDC and ±17VDC to the chassis under test and record front panel LED operation, total positive and negative power supply current, internal regulator output voltage and individual circuit board power supply currents as required in Table 2.

RF Tests

- Using a calibrated and normalized RF network analyzer, measure the insertion loss from each of the four front panel RF inputs to the respective RF monitor ports. Record the insertion loss at each frequency required in Table 4.
- Apply an RF or LO input at the prescribed frequency in accordance with Table 5. For each combination, record the DC value of each of the four RF and LO level detector responses.
- Apply an RF or LO input at the prescribed frequencies in accordance with Table 6. For each combination, record the amplitude of the differential IF beat as required in Table 6.

IF Tests

- As detailed in Section 4.7, use the cross correlation setup in an SR785 and measure the I&Q balance at the front panel BNC outputs and record the results per Table 7 and Table 8.
- Use an SR785 to measure the IF output noise, with the associated RF input terminated in 50 ohms. Record results as required in Table 9 and Table 10.
- Using a pair of RF signal generators and an oscilloscope, measure the -3dB bandwidth of the IF chain. Record the results in Table 11.

3 Reference for chassis front and rear panel layout

Figure 2, Two-channel Demodulator Front Panel

Figure 3, Two-channel Demodulator Rear Panel

Figure 4, Two-channel Demodulator eagle view

4 Test Data Tables

4.1 General Information

Table 1, Serial Number Data

Chassis Serial Number	Power board Serial Number	Ch.1 PCB Serial Number	Ch.2 PCB Serial Number

4.2 DC Power Supply Data

Total chassis power and individual voltages are recorded in Table 2. Use caution in believing the digital readouts of laboratory triple output power supplies. Their meters are not highly accurate. When in doubt, use a multimeter on the appropriate scale in series with the supply to be measured. For the last 4 lines use a SR785 and measure the rms power spectrum.

Table 2, Record of DC Test Data

Parameter	Typical Value	Allowable Range	Measured Value
Front & Rear Panel LEDs	All eight on	N/A	
+24V current	TBD	±50mA	
-24V current	TBD	±50mA	
+17V current	TBD	±50mA	
-17V current	TBD	±50mA	
+15V (TP11 on power board)	+15V	±0.1V	
-15V (TP6 on power board)	-15V	±0.1V	
+VREF (TP12 on power board)	+10V	±0.1V	
-VREF (TP13 on power board)	-10V	±0.1V	
+5V (TP5 on power board)	+5V	±0.25V	
OK (TP14 on power board)	3.5V	3V to 5V	
+17VDC current (Board 1)	TBD	±15mA	
-17VDC current (Board 1)	TBD	±15mA	
+17VDC current (Board 2)	TBD	±15mA	
-17VDC current (Board 2)	TBD	±15mA	
+15V (TP11 on power board)	10nV/√Hz @ 140Hz	<20nV/√Hz	
-15V (TP6 on power board)	12nV/√Hz @ 140Hz	<20nV/√Hz	
+VREF (TP12 on power board)	5nV/√Hz @ 140Hz	<20nV/√Hz	
-VREF (TP13 on power board)	7nV/√Hz @ 140Hz	<20nV/√Hz	

4.3 DC Offsets on Each IF Output

As a general measure of the health, the DC offset at the differential outputs for each channel must be measured. Using a multimeter, measure the DC offset at each differential output on the associated front panel TNC connector. Record the results in Table 3.

Table 3, IF Output DC Offset

Differential DC	T IDCOCC	411 11 D	Measured DC Offset	
Measurement Point	Typical DC Offset	Allowable Range	I	Q
Channel 1	0VDC	±5mV		
Channel 2	0VDC	±5mV		

4.4 Coupling Factor for Front Panel Monitors

Using a calibrated and normalized RF network analyzer, measure the insertion loss from each front panel SMA RF input to its respective RF monitor. Record the test data in Table 4.

Table 4, RF Monitor Test Data

D .	Typical	Allowable	N	Ieasured Valu	es
Parameter	Value	Range	9 MHz	45 MHz	100 MHz
Chan.1 RF In to RF Monitor Gain	-23dB	±0.5dB			
Chan.2 RF In to RF Monitor Gain	-23dB	±0.5dB			

4.5 RF Level Detector Calibration Data

Apply a signal of the indicated magnitude to the RF or LO input on the front chassis SMA and TNC connectors as specified in Table 5. Using a multimeter, record the DC voltage as measured at the RF monitor outputs on the rear D-sub connector.

Table 5, RF Level Detector Response

RF	LO			Allowable	Measure	ed Value
Freq/Level	Freq/Level		Typical Value	Range	CH1	CH2
45 MHz	45 MHz	LO	4.0V	±0.05V		
(-20dBm)	(-20dBm)	RF	3.15V	±0.05V		
45 MHz	45 MHz 45 MHz (-10dBm)	LO	4.6V	±0.05V		
_		RF	3.75V	±0.05V		
45 MHz	45 MHz	LO	5.2V	±0.05V		
(0dBm)		RF	4.35V	±0.05V		
	45 MHz	LO	5.8V	±0.05V		
	(10dBm)	RF	4.95V	±0.05V		

4.6 IF Beat Note Measurements

Using a pair of RF signal generators, apply the indicated amplitude and frequency signals to the chassis under test as detailed in Table 6.

The IF beat note is measured differentially at the front panel TNC outputs for each channel under test using an SR785. Be sure to set the dynamic signal analyzer FFT window function to "flat top" during this amplitude measurement in order to accurately measure the peak to peak voltage at each beat note frequency.

				Measured Value (p-p)			
RF Freq/Level	LO Freq/Level	IF Beat Note Typical Value	Allowabl e Range	Cl	H1	CH2	
Freq/Ecver	Freq/Eever	Typical value	c Kange	I	Q	I	Q
45 MHz 0dBm±0.2dB	45.0001 MHz 10dBm±0.2dB	100Hz @ 1Vp-р	±0.1Vp-p				
45 MHz 0dBm±0.2dB	45.001 MHz 10dBm±0.2dB	1kHz @ 1Vp-p	±0.1Vp-p				
45 MHz 0dBm±0.2dB	45.01 MHz 10dBm±0.2dB	10kHz @ 1Vp-p	±0.1Vp-p				
45 MHz 0dBm±0.2dB	45.1 MHz 10dBm±0.2dB	100kHz @ 1Vp-p	±0.1Vp-p				

Table 6, IF Beat Note Amplitude vs. Frequency Measurement Data

4.7 IQ Amplitude and Phase Balance

When measuring the IF beat note, the I and Q IF outputs should ideally be exactly equal in magnitude, and 90 degrees out of phase. Section 5 of this document has a printout of the settings file for the SR785 Dynamic Signal Analyzer used to perform an I and Q balance measurement. These settings can be restored to the machine by obtaining the machine setup file from the DCC and loading them onto the SR785 via a floppy disk. LIGO Document T1100087 is actually this file.

Once the settings file is loaded into the SR785, apply an LO and RF signal at the indicated frequencies shown in Table 7. The LO signal level should be 10dBm±0.2dB, and the RF signal level should be 0dBm±0.2dB.

On the front panel of the I&Q demodulator are two TNC jacks per channel. Apply the I monitor signal to the SR785 Channel 1, A input. Apply the Q monitor signal to the SR785 Channel 2, A input. Record data as needed in Table 7 and Table 8.

LIGO- E1100114-v1

Table 7, Channel 1 IQ Balance

Channel 1 RF Input and LO Frequency	Typical Amplitude Balance	Allowable Range	Typical Phase Balance	Allowable Range	Measured Amplitude Balance	Measured Phase Balance
9MHz & 9.01MHz	0dB	±0.5dB	90°	±5°		
36MHz & 36.01MHz	0dB	±0.5dB	90°	±5°		
45MHz & 45.01MHz	0dB	±0.5dB	90°	±5°		
100MHz & 100.01MHz	0dB	±0.5dB	90°	±5°		

Table 8, Channel 2 IQ Balance

Channel 2 RF Input and LO Frequency	Typical Amplitude Balance	Allowable Range	Typical Phase Balance	Allowable Range	Measured Amplitude Balance	Measured Phase Balance
9MHz & 9.01MHz	0dB	±0.5dB	90°	±5°		
36MHz & 36.01MHz	0dB	±0.5dB	90°	±5°		
45MHz & 45.01MHz	0dB	±0.5dB	90°	±5°		
100MHz & 100.01MHz	0dB	±0.5dB	90°	±5°		

4.8 IF Output Noise Spectra

With the specified LO frequency applied; terminate each of the RF inputs under test in 50 ohms. Measure the IF output referred noise differentially at the rear panel D-sub output for each channel as required. Record the results in Table 9 and Table 10.

Table 9, Channel 1 IF Noise

IF Measurement	Typical Amplitude	Typical Amplitude Allowable Range		Measured Amplitude dBVrms/√Hz		
Frequency	dBVrms/√Hz	0	I	Q		
100Hz	0dB	±2dB				
1kHz	0dB	±2dB				

Table 10, Channel 2 IF Noise

IF Measurement	Typical Amplitude dBVrms/√Hz	Allowable Range	Measured Amplitude dBVrms/√Hz		
Frequency	dBVrms/√Hz	3	I	Q	
100Hz	0dB	±2dB			
1kHz	0dB	±2dB			

4.9 IF Bandwidth

Apply a fixed 45MHz RF generator at $0dBm \pm 0.2dB$ as the front panel RF input, and a variable frequency LO starting at a frequency of 45.001MHz and a fixed level of $10dBm \pm 0.2dB$ applied to the LO input on the rear of the chassis under test. Use a dual channel oscilloscope with a pair of probes to view the IF beat note differentially on the rear panel D-sub for the channel under test. Increment the LO frequency until a 3dB decrease in the IF beat note is observed. Record the frequency corresponding to the -3dB frequency in Table 11

Table 11, Channel 2 IF Bandwidth

	Typical -3dB	Typical -3dB		Measured -3dB IF Bandwidth		
Channel	Bandwidth	Allowable Range	I	Q		
1	80kHz	±2kHz				
2	80kHz	±2kHz				

5 Appendix

The SR785 Settings associated with the I and Q phase and magnitude balance measurement.

Input	Ch 1	Ch 2
Source	Analog	Analog
Config	Dual Chan.	Dual Chan.
Mode	Α	A
Ground	Float	Float
Coupling	AC	AC
Range	6 dBVpk	6 dBVpk
AA Filter	On	On
A-Wt Filter	Off	Off
Auto Range	Up Only	Up Only
Auto Offset	On	On
EU	Off	Off
EU Label	m/s	m/s
EU/Volt	1 EU/V	1 EU/V
User Label	EU	EU
Tachs/Rev	1	1
Tach Level	0.00 V	0.00 V
Tach Trigger	TTL	TTL
Tach Slope	Rising	Rising
Tach Holdoff	Off	Off
ShowTach	Off	Off
Xdcr Convert	m/s	m/s

Measure	Display A	Display B
Measurement	Cross Spec.	FFTUsrFn1
View	Phase	Log Mag
Units	deg	dB
dB Units	Off	On
Peak Units	pk	off
PSD Units	Off	Off
Phase Units	deg	deg
dBm Ref	50	50
Base Freq	102.4 kHz	102.4 kHz
Span	400 Hz	400 Hz
Start Freq	9.8 kHz	9.8 kHz
Lines	800	800
Window	BMH	BMH
Force	3.90625 ms	3.90625 ms
Ехро	50.00%	50.00%

Average	Display A	Display B
Comp. Average	Yes	Yes
Туре	Exp. / Cont.	Exp. / Cont.
Display	RMS	RMS
Number	20	20

Time Incr	100.00%	100.00%
Reject	Off	Off
Preview	Off	Off
Prv Time	2 s	2 s

Display	Display A	Display B
Ymax	250	50
Y/div	50	10
Xcenter	2.86479 k	50
X/div polar	572.958	10
Ycenter	2.86479 k	50
Y/div polar	572.958	10
Pan	0	0
Zoom	x1	x1
Format	Dual	Dual
X Axis	Linear	Linear
Grid	On	On
Grid Div	10	10
Grid Type	Rectangular	Rectangular
Phase Suppress	0.00E+00	0.00E+00
d/dx Window	0.5	0.5

Marker	Display A	Display B
Marker	On	On
Mode	Normal	Normal
Seeks	Mean	Mean
Width	Spot	Spot
Relative	Off	Off
X Relative	Off	Off
X Rel	0	0
Y Rel	0	0
# Harmonics	1	1
Display	Fundamental	Fundamental
Readout	Absolute	Absolute
Sideband Sep	0	0
# Sidebands	10	10
Band Exclude	none	none
Band Ratio	/	/

Waterfall	Display A	Display B
Wfall Display	Normal	Normal
Wfall Storage	Off	Off
Storage Mode	All	All
Total Count	253	253
Skip	30	30
View Count	10	10
Trace Height	70%	70%
Angle	-26	-26

Fast Angles	Off	Off
Threshold	0%	0%
Hidden Lines	Invisible	Invisible
Paused Draw	Normal	Normal

Source		
Source	0	[0=Off, 1=On]
Туре	0	[0=Sine, 1=Chirp, 2=Noise, 3=Arb]
Sine Freq 1	10.24 kHz	
Sine Amp 1	500.0 mVpk	
Sine Freq 2	51.2 kHz	
Sine Amp 2	0.0 mVpk	
Sine Offset	0.0 mV	
Chirp Amp	1000.0 mV	
Chirp Burst	100.00%	
Source Display	Display A	
Noise Amp	1000.0 mV	
Noise Type	BL White	
Noise Burst	100.00%	
Arb Amp	100.00%	
Arb Rate	262.1 kHz	
Arb Source	Arb. Buffer	
Arb Start	0	
Arb Length	4 kPts	

Trigger		
Arming Mode	Auto Arm	
Trigger Source	Cont	
Trigger Level	0%	
Trigger Slope	Rising	
Delay1	0 s	
Delay2	0 s	
Source Mode	Continuous	
Start RPM	Off	
Start RPM	50	
Delta RPM	Abs. Change	
Delta RPM	10	
Time Step	100 ms	

Capture		
Capt Channels	Ch1+Ch2	
Capt Mode	1 Shot	
Capt Length	2024 kPts/ch	
Capt Rate	262.1 kHz	
Auto Pan	On	
Playback Start	0	
Playback Len	2024 kPts/ch	
Playback Mode	1-Shot	

Playback Speed	Normal	
Г	1	
Memory	222 711	
Capt Memory	2025 Blks	
Wfall Memory	2024 Blks	
Arb Memory	2 Blks	
0	T	
System	Books	
Output To	RS232	
GPIB Address	10	
Overide REM	Yes	
Baud Rate	9600 bd	
Word Length	8 bits	
Parity	None	
Key Click	Off	
Alarms	On	
Alarm Vol	Noisy	
Done Vol	Noisy	
Audible Ovld	On	
Screen Saver	On	
Saver Delay	10 m	
Freq Format	Exact Bin	
Node Info	No	
Output		
Print Screen Key	ASCII Dump	
Printer Type	PCX 8 bit	
Bitmap Area	Graphs	
Plotter Type	PostScript	
Destination	Disk File	
GPIB Control	SR785	
Plotter Address	2	
Print Bright	12%	
Print Dim	White	
Print Black	Black	
Print Graph	Black on White	
Text Pen	1	
Grid Pen	1	
Trace Pen	1	
Marker Pen	1	