

FOUNDATION LOAD SUMMAET For ICD-ETSLAE

BEAT TUBE FixE ANO GUDED SWPPQT LDADE WEDE
 FOZ COnTHAET 930212 , DESM, \& Quanacanal TEST. IN FEPONSE TO CHADES IN SCOPE AND GMAMEE in TME

FXE SUppat - AxiAK EAKE OUT LOAB ORMWAL DESGA
THIS DEMN DID NOT CONSUEE THE FIXTO SNPPRET NEXT TO THE TERMNATNA. THE AXIAL LOAD WRE BADED DN A
 on 1600 /im. ThE AxiAR COMPrLESSDN DUE TO BAKE

 Were aboes To This boab Fesuline in a mammuan

 AWiN LOAD OF 85O6 H AS REPRUED ON DE. 12, 1495. DECMEER 12 URDATE
THE DREMBER $12,95=$ ECDRT HESO couthante LoADS FED The nxep gupport Jext To THE Temmition. This bodo
 DF 8,000 OU EXH SDOE DF THE SWPDOT. The
 THE TME. THE LEMETM TD THE FICST SIPPORT FTOM

SUBJECT
in A Diftreatime comptesion or

$$
3.42\left(\frac{30-97.67}{30}\right)=.865
$$

And m Axial woAD OF . $865(8000)=6922$ H

THE TOTAE ARIA REORTE MNAL LOAD WAS 9862 $=$

ICD-ETSLAB

RElighan O WAS BREED OH A MPDWMJM SPRNG RACTE of 8, 200 AND A MADMNM SPRing RATE QANGE of
 BE BRSD O TWE AGTML SRRING RATE RANGE NDD MAXMUM SPR:NG RRTE MEASJRED WN THE FITST 111 Exphession doINTS. THE HIGHEST AND WODEST EXFOLTOM
 A RACNEE OE 9T3 W/MA. To DETEMME TME LOADS, The Fownowisa contitoms wlu EE JEED:

$$
\begin{aligned}
& \text { MARMMUM SPRING RATE AT EUDS } 5425 \% / \mathrm{min} \\
& \text { MAximsM NTERMEDATE SPRUN RATE } 5240 \text { H/moh } \\
& \text { MAXimbm SPRMAK EATE RRNE } 1000 \% / \mathrm{man}
\end{aligned}
$$

Gomprassian DUE T BALE OUT:
 Nert To TERMinaton $\Delta x=\left(93.25^{\prime}\right)(12)(232)\left(9.9 \times 10^{-6}\right)=2.570^{11}$ Comprasson VAmation Due To insthmemion : 25"

NTEEMEDNTE SUPPOTS

Axim Lomp Due Toke $=1000(3833)=3833^{4}$ ToTA AxiA LaAD $=3832+771+2169=6773=$ EXED SUPPORT NEAR TEEMINATION

AnAR LODE DuE D BAKE $=5425[(3.583-2.570]=5495$
Tum Ax:de LoAD $=5495-771+2169\left(\frac{1165}{130}\right)=8125=$

Assumb is ${ }^{9}$
 Bown - Mactany PRownes some

$$
\text { Total hejhh }=7,5 \mathrm{in}
$$

 $-16(0.5)$

$$
G_{a}=\frac{b b^{2}}{b}=\frac{(b)\left(d^{2}\right)}{b}=1,33 d^{2}
$$

TENSElsmen Lanco

$$
\begin{aligned}
& F_{b}=0.75 \times 19100 \times 1.333 \div 19095 \mathrm{~F}=1
\end{aligned}
$$

Fing REGuizes hembit Hext

$$
M=1265014 \times 4.51+56,703
$$

DESIGO SHEAR Cownetram wEin To Tute -

$$
F=\frac{12650}{29.810}=424 \frac{16}{10}
$$

-1910 a 3005

Sebmit allawhe monouse
For hat humtion load

$$
f=0.7074 x=0.707 \times 6 \times 5730 \times 1.32=124
$$

$$
\omega 0=0.079 \quad \text { USG } / \mathrm{K}^{\prime \prime} \text { ON DNE ON }
$$

$$
\text { SThen wrwo tork sisc } \frac{2079}{125}=6 \% \text { win }
$$

Primect in USA

$$
\begin{aligned}
& \text { A305 Boctinc. Type } 3 \text { (ateatherog Stad) } \\
& \text { Bolt TENSNON }=\frac{1265016}{2 B_{2 i n}}=6,325116=6.3 \mathrm{kps}
\end{aligned}
$$

DEntire page rove

Effective well height $=7.5+d=9.5 \mathrm{im}$

$$
\begin{aligned}
& w_{7}-\frac{F_{L}}{A_{w}}=666 \mathrm{~F} \\
& m_{b}=\frac{H^{\prime}}{S_{w}}=1,366 \\
& \text { Nat } E\left(\frac{2}{2}-d\right)=4,113 \ldots .6 \\
& S_{0}=\frac{25}{2}=30 . \\
& W=4=2,032 \% \\
& w=\frac{W}{7,070(1.23)} \\
& Q_{(0.70)(0.4) F_{y}}=0.4(2,000 \mathrm{~F}, 3)(.707)=7,70 \mathrm{l} 1 \mathrm{~m} \\
& w=0.216 \mathrm{in}=5.5 \mathrm{~mm}
\end{aligned}
$$

 case, therefore increase the minimum mallotion T to $0^{\circ} F_{0}$

1) Rev. entire sheet

$$
\leq 12.6 B
$$

ULO2 (d) ANOWS 202 INCNEASS IN STMEISGS

$$
1.2 \times 12.8<54=15.4<5 \pm
$$

 IN OUTEN FIBGRS OF RNG WITH FUGAXAT
 H4.7 HSI APPUED SIMULTANEOUSTY. THIS bato

$1 / 582 \mathrm{ps} \angle 15400 \mathrm{ps} \mathrm{I}$ DK

$11582<15276$ Ol

CHECK BUCKLING of TUBE WALLS-

$$
\begin{aligned}
& f_{A}=\frac{b_{2}^{25} b}{(6 \operatorname{sen})(0.375)}=2,31 / p s
\end{aligned}
$$

$$
\begin{aligned}
& F_{a}=C_{a} F_{y}(1.333)=32437 p \mathrm{~L} \\
& f_{b}=\frac{m}{S}=\frac{573 x+11}{\left.(6)(0.37)^{2}\right)}=497 \mathrm{PS} \\
& F_{p}=(0.75)(46000)(1.333)=45989 p 55 \\
& \text { i) Ention pape rea } \\
& \frac{297}{32437}+\frac{4976}{45989}=0.77<1 \quad 014
\end{aligned}
$$

CHECK BENDHLO STMENGTH OF CROST-REM AT HOEES -

Loncitubimate LoAno
$D M=\frac{p_{1}}{4}=\frac{(1020)(32)}{4}=1012001016$

Force an Rot he Due to Axil Loll

$R A=10,650$ 16 ख
$h=42.13+3.2-24.5-8.5=12.63 \mathrm{~m}$

Moment in fo of The 重 off Amer

$$
\begin{aligned}
& \leq M_{x}=0 \quad 12,63\left(\frac{R A}{2}\right)+38\left(R V_{3 A}\right)=0 \\
& R U_{18 A}=\frac{-12.63(R A)}{38(2)}=-2.0211 \\
& \sum F_{4}=0 \quad \quad R V_{2 R A}=-R V_{B R A}=\sigma_{1} 10 x \%
\end{aligned}
$$

Max．Tension of Anchor Bolts

$$
T_{H_{0}, 1}=\frac{-R \sqrt{2} \min +R V_{2 R A}}{2}=\frac{377+2,102}{2}=1200 \mathrm{Hb} / 601 \mathrm{~A}
$$

Comprestion on Ease Plate

$$
\begin{aligned}
C_{\text {tat }}=R V_{2 R A}+R V_{\text {max }} & =9,997 \mathrm{H} \\
\text { where } R V_{\text {max }} & =7,895 \mathrm{H}
\end{aligned}
$$

Size Gusset for Anchor SoL_{2}

$$
M=T\left(l_{1}+l_{2}\right)=22,220 \mathrm{~m} / \mathrm{l}
$$

where $T=1,240 \mathrm{lb}$

$$
\text { Use a } 4 \times 1 / 2 \text { Gusset }
$$

subject

$$
\begin{aligned}
& \ell_{1}=5 \mathrm{~m} \\
& L_{2}-13 \\
& s=\frac{M}{\sigma}=1.03 \mathrm{~m}^{3} \\
& \text { where } p=0.6 F_{y}=0.6(36 \mathrm{ki})=21.6 \mathrm{ks} \\
& S=\frac{b d^{2}}{6} \rightarrow d=\sqrt{\frac{6 S}{b}}=3.5 \mathrm{in} \rightarrow \text { Use } d=4 \mathrm{in} \\
& x+3=0.5 \text { in }
\end{aligned}
$$

 $Z=4 \mathrm{ft}$ (s/idty comomontw)
B) $\begin{aligned} & R A=6,491 \\ & \& V_{\text {ERA }}=1,067 \text { it }\end{aligned}$

Axial loa on sugle $=P=\sqrt{\left(\frac{R A}{2}\right)^{2}+\left(R V_{R A}\right)^{2}}=3.4 k p$ s
(conservative)
From AISC Eugr Dound for $\angle 3 x 3 x$ 㲿 and

$$
K L=1(4)=4 f \rightarrow P_{4}=50 / K_{p s} \quad \therefore O K
$$

Check Anchor Eolts

Shear $=v=1,897 / 6$

Usimg AIti $K E-/ l$ Carbon $S t e l$ Andor $E_{0} t_{s}$ w/ ICBO dlowables $\left(5 \%^{\prime} \%\right.$ W/ \&"Embal $)$
ह) $\frac{T_{\text {tal }}}{T_{a l}}+\frac{v}{V_{a}}=1.34 \approx 1.33$
\therefore Arina are adeante
where $A S=6 \mathrm{~m} ; T_{\text {al }}=2,670 \quad 16(080)=2,13616$

$$
V_{d 1}=3,12511(0.80)=0,50016
$$

$$
\therefore O K
$$

This spreadsheet calculates the load carried by the individual bolts in a group. The boll locations are described using x and y coordinates relative to the point of load application, i.e. loads Px and Py are applied at coordinate (0,0).

$$
\frac{\text { Design } V \text { Stan Mentors }}{\text { (conervotuely osomene }}
$$

$$
P=7,895 / \text { lely acme } F=1,304
$$

$$
11
$$

$L=42.13+3.5-845-8.5=12.63 \mathrm{in}$
$f_{a}=\frac{P}{2 A}=2_{2} 407 \mathrm{psi}$
where $A=1.64 \mathrm{in}^{2}$ (for The $3 \times 2 \times 3 / 6$)

$$
\frac{k L}{r}=\frac{1.0(12.63)}{0.77}=16.4>\rightarrow \frac{k L}{C_{c}}=0.15 \rightarrow C_{a}=0.574
$$

$$
c_{c}=11.6 \quad\left(F_{7}+46 k_{3}\right)
$$

(ASC, Table 3)

$$
F_{a}=C_{a} F_{y}=26,104 p^{5 i}
$$

(1) $\left.\right|_{f_{b \times 1}}=\frac{M_{x i}}{S_{3}}=17,25 p ;$

$$
\text { where } M_{x} \frac{342}{16}=21,347 \mathrm{in} .16
$$

$S_{x}=1,24 \mathrm{n}^{3}$ (ont, (1) Time $3 \times 2 \times 1 / 6$ is luce)

$$
\begin{aligned}
& F_{b}=0.66 F_{y}=20.360 \mathrm{p} 3 \\
& f_{b y}=\frac{M_{y}}{2 S_{y}}=8,429 \text { psi (both tubes roscoe bending) } \\
& \text { where } M_{y}=F L=16,470 \ldots .16 \\
& S_{y}=0.177 \mathrm{in} 3 \text { (tor The } 3 \times 2 \times 3 / 16 \text {) } \\
& f_{b x 2}=\frac{M_{x 2}}{25_{x}}=11,42 \text { psi (bothtubestract bending dow to } \\
& \text { ware } M_{x=} P P\left(\frac{3}{2}+\frac{4}{2}\right)=27623 \ldots 16
\end{aligned}
$$

$$
\begin{array}{r}
\frac{f_{a}}{F_{a}}+\frac{f_{b_{x}}+f_{b x a}+f_{b}}{F_{b}}=1.30<1.33 \\
\text { Iner in to seismic }
\end{array} \quad \therefore O K \quad \ll
$$

Uplitt on anchore wanes berding in bata phate

$$
\begin{aligned}
& T=T_{t h 1}=1,240 / 1 \quad(6,4,2)
\end{aligned}
$$

$$
\begin{aligned}
& 2=4+4=8: 0
\end{aligned}
$$

$N=\frac{(2 T)}{4}=4,960 \mathrm{in} .16$
$S=\frac{M}{\infty}=0.18 \mathrm{in}^{2}$
1

$$
\begin{aligned}
& 1-136
\end{aligned}
$$

$$
\begin{aligned}
& \text { wate } b=5.0 \mathrm{~m}
\end{aligned}
$$

Size Well at Ends of Angle Brace

$$
\begin{aligned}
p & =\sqrt{\left(\frac{R A}{2}\right)^{2}+\left(R V_{F A}\right)^{2}} \\
& =\sqrt{\left(\frac{2,650}{2}\right)^{2}+(2,102)^{2}} \\
p & =6,66516
\end{aligned}
$$

Try using a 3/6" fillt well to forl woll length requirel.

1) $W=\frac{P}{A} \rightarrow A=\frac{P}{W}=3.7 \mathrm{in}$

$$
\text { where } w=\frac{W}{1,660} \rightarrow w-q, 600 w=1600(\%)-1,600 \text { 最 }
$$

By inspection, whtl lerth ts alequate.

Size Well of Vortiol support Eraket to Superting

$$
D \left\lvert\, \begin{aligned}
& A_{w}=d+3^{\prime \prime}=9.5 \mathrm{in} / \mathrm{m} \\
& S_{w}-\frac{1^{2}}{6}=\frac{6.5^{2}}{6}=7.0 \mathrm{~m} 3 / \mathrm{mi}
\end{aligned}\right.
$$

D Ignore twit on well because loat is close to cuntrud of well. \therefore Torsion on weld is meyligitle.

$$
\begin{aligned}
& F_{c}=3,70016 \quad(\text { sht. } 72) \\
& M=F_{c}(1,25 \mathrm{in})=4,625 \mathrm{in} 16 \\
& F_{c 2}=F_{c} \sin (2,28)=20716
\end{aligned}
$$

$$
D\left\{\begin{array}{l}
W_{s}=\frac{F_{c}}{A_{W}}=3891 / \mathrm{m} \quad W_{s 2}=\frac{F_{c 2}}{A_{W}}=221 / \mathrm{in} \\
W_{8}=\frac{M}{S_{W}}=661 \mathrm{b/n} \\
W=\sqrt{W_{s}^{2}+W_{s}^{2}+W_{s 2}^{2}}=767 \mathrm{H} / \mathrm{m} \\
W=\frac{W}{4051}=.19^{\prime \prime} \longrightarrow U s e w=5 \mathrm{~mm} \\
\quad(\mathrm{sh} .3 .75)
\end{array}\right.
$$

Siee Vestind Suppot Brotket
Becasce $F_{0}=3,700 / 1=F_{L}$
(later l) ond atermertion
use a $1 / 2$ the bracket.

THE OGMWAB DESGA WAS BASED ON A TO F AMBIENT T.

 TMAT THEL ARE W A RELAKED STATE AT A HGMEZ TEMPERATURE.

LENTTH BETHEEN FixED SUPPORTE $=130^{\circ}=1560^{\circ}$

\therefore Albowarve TEMPERATURE whCRERSE For $/ 2$ STRETGM

SUPPORT INSTALCATION SEQUENCE

	$\begin{aligned} & 0 F F \mathrm{FE} \\ & \hline \end{aligned}$	fevision		REFERENCENO. 953571
MADEBY Mut	$\begin{aligned} & C H K D B Y \\ & N T R \end{aligned}$	MADE BY	CHKD BY	SHT_ OF_
DATE	$\begin{aligned} & \text { PATE } \\ & 2 / 4 / 97 \end{aligned}$	DATE	DATE	8.3

 WUL BE COMPOSES OF THE EX. JT SPRING GOLE PLUS THE FESSTANE TO ROUWH DR SLDNK THE EEAM TUSE SECTOMS

$$
F_{\text {torn }}=F_{\text {exas. }}+F_{s t i t}
$$

 IN THONT OF TME LAST FIXE 5 SPRTET BEMM TuEE SETROLE WHL EE OH ROLETS ot ELDE RHES. Fom THE ATMEMED SMEET, TME MAHEST COEFGUEN

BEAR TUEE $5 E t \operatorname{sen} \omega T=65 \times \pi / E T=4875$

$$
\because F_{465}^{\infty}=4.5[(16)(485)]=3510
$$

MAncimus

$$
\begin{aligned}
& 0 \Delta T=12 \Rightarrow 6=130^{3}=1560^{\circ} \quad \leq=9.9010^{-6} \mathrm{~m} / \mathrm{mom} \\
& 0 \Delta \square \pi(L)(E)
\end{aligned}
$$

$$
\begin{aligned}
& F_{\operatorname{sen}}=1.73 \times 5300=9170 \\
& F_{B+10}=36+9170=12680^{3}
\end{aligned}
$$

The following information applies to "Fuorogold" epoxy bonced to a metal back-up plate:

BEAM TUBE MODULE
 SPIRAL SEAM OFFSET TECHNICAL REVIEW
 FEBRUARY 20, 1997
 Revised Aprill4, 1997

Executive Summary

To date, CBI has fabricated over 223 spiral tube sections on the tube mill at CBI's fabrication facility. These 223 beam tube sections contain approximately 12 miles of spiral butt weld. The beam tube technical requirements were established in the original Design and Qualification Contract. The current technical requirements include a limit on the spiral seam offset of $1 / 4$ times the thickness of $.125^{\prime \prime}$ which is $1 / 32^{\prime \prime}$. The seam offset is the distance between the centerlines of two plates meeting at a butt welded joint. Out of the 223 tube sections produced, 12 tubes contain areas of the spiral weld where the mismatch exceeds $1 / 32$. The areas of offset greater than $1 / 32^{\prime \prime}$ have been documented as they were discovered in Non Conformance Reports. This report describes the offset configuration, causes for the offset, the impact of the offset on the structural integrity of the modules, and proposed revised technical requirements for spiral seam offset. The proposed revised technical requirements are a limit of $3 / 32$ " for offsets at the locations of highest stress and a limit of $1 / 8$ " for offsets in all areas outside of the highest stressed areas.

Technica Requirements

CBI Specification C-BT-CO

The technical requirements for the beam tube sections are contained in CBI Specification C-BTCO entitled "LlGO Beam Tube Sections - Construction Option". Although the specification was developed by CBI in the Design and Qualification Test contract for procurement of tube sections fabricated by an outside vendor, the scope of the specification is to provide technical requirements for the spiral welded tube sections. Based on the code guidelines specified by Caltech for the original design, the list of applicable codes in this specification includes:
"ASME Unfred Pressure Vessel Code, Section VIII, Division 1, 1992 Edition, 1993 Addenda as applicable. (Code stamping is not required.)"

Section UW of ASME Section VII, Division 1 is entitled "Requirements for Pressure Vessels Fabricated by Welding". Table UW- 33 requires a maximum seam offet of $t / 4$ for shell thicknesses less than $1 / 2^{\prime \prime}$.

Specification C-BT-CO, section 6 contains the requirements for fabrication of the spiral tube sections. Section 6.1 contains the requirements for welding. Paragraph 6.1 .6 states:
"Edge registry for spiral welds must be within 1/4 of the thickness which is $1 / 32$ inch."

Basis of the ASME Seam Mismatch Requirements

The offset values in ASME table UW- 33 are based on past experience of achievable fabrication for pressure vessels fabricated by conventional methods. These offset requirements are not directly tied to the design rules. During the initial design, CBI checked the interaction between

BEAM TUBE MODULE
SPIRAL SEAM OFFSET TECHNICAL REVIEW
FEBRUARY 20, 1997
Revised April 14.1997

longitudinal compressive stresses and circumferential compressive stresses per API Bulletin 2 U entitled "Bulletin on Stability Design of Cylindrical Shells". This bulletin includes design rules for stiffened cylinders under external pressure and longitudinal stress. The rules are based on tolerances described in section 10 of API 2U. Although API 2U does not specifically address seam offset, the bulletin does provide recommendations for the local deviation from a straight line. The allowable deviation from a straight longitudinal line over 4 times (Rt$)^{1 / 2}$ is 1% of $4(\mathrm{Rt})^{1 / 2}$. This results in an allowable deviation of . $07^{\prime \prime}$ over a length of $7^{\prime \prime}$. Based on API 2U, the allowable offset at any location in the beam tube is $.07^{\prime \prime}$.

Development of the Welding Requirements

The specific requirement for weld registry of $t / 4$ in the specification was based on extensive tests by CBI on the allowable edge mismatch using a standard Gas Tungsten Arc Weld (GTAW) process. The GTAW process is also know as the Tungsten Inert Gas (TIG) process. Weld tests with coupons performed by CBI and spiral welds made by tube fabricators demonstrated that offsets greater than approximately $t / 4$ could not be successfully welded with the standard GTAW process. These offsets produced large holes and areas with a lack of fusion when a standard GTAW process was used. Tests conducted during the original design contract and qualification test also identified the fact that the standard OTAW process did not provide sufficient penetration into the material to ensure 100% fusion at all locations. To solve the problems associated with the lack of penetration, CBI investigated the use of high frequency pulsed GTAW process with tests performed in Plainfield prior to the Design Review for the current contract. This weld process produces a deep and narrow weld penetration which not only provides 100% penetration and allows greater weld speeds, but also allows greater offset in the edge registry without producing the problems associated with the standard GTAW process. Caltech approved the change in the spiral weld procedure from the previously approved standard GTAW process to the new high frequency GTAW process.

To date, approximately 200 tube section have been leak tested. In addition to a leak check, the test imposes significant circumferential and axial stress in the tube. The circumferential stress is 2.9 ksi and the axial stress is 1.5 ksi plus additional longitudinat stress due to dead load bending moments. All sections tested to date have been entirely leak free including those tube sections with spiral seam offsets greater than $1 / 32^{\prime \prime}$.

Description of Seam Offet

All beam twbe sections are inspected after welding to ensure dimensional conformance to the technical requirements. Seam offsets greater than $1 / 32$ " have been measured and documented in Non Conformance Reports submitted to Caltech. The seam offset configurations and locations are presented in the attached "Summary of Tubes With Joint Offset". Twelve beam tube sections contain one or more areas of seam offset greater than $1 / 32^{\prime \prime}$. The total number of offset locations in all twelve tubes is 38 . The total length of all offser locations is 741.5 " for an average length of $19.5^{\prime \prime}$. The mean length is 11 inches. The longest continuous offset exceeding $1 / 32^{\prime \prime}$ is $180^{\prime \prime}$ and

BEAM TUBE MODULE
SPIRAL SEAM OFFSET TECHNICAL REVIEW
FEBRUARY 20, 1997
Revised April 14. 1997

the shortest offset such is 4 ". All of the offset areas are 21 " long or less except for 3 areas. The maximum offset at 28 locations is $1 / 16^{\prime \prime}$. The maximum offset at 9 locations is $3 / 32^{\prime \prime}$ and one location has an offset of $1 / 8^{\prime \prime}$.

Some tube sections which contain mismatches have been stiffened and leak tested. The severity of the discontinuity is reduced by adding weld metal to the seam mismatch to provide a 3 to 1 transition at the seam mismatch. A typical offset seam with a weld metal transition is shown in the attached Non Conformance Report.

Causes Leading To Weld loin Offet

CBI has identified a number of items or conditions which are potentially responsible for spiral seam offsets greater than $1 / 32^{\prime \prime}$. These items are listed below.

1. Coil with deformed slit edge - Distorts area at weld joint marriage point making it very difficuit to control aligment and tube diameter.
2. Coil with edge that is not straight - Causes gap control to make excessive and repeated movements distorting the weld joint marriage point.
3. Coil with excessive camber - Results in difficulty in controlling seaming rollers at weld joint marriage point.
4. Mill spider pressure - Can potentially distort shape of the tube in the weld joint marriage point.
5. Mill seaming roller adjustment - Improper adjustment can distort the area at the weld joint marriage point.
6. Mill operator error - Can directly cause excessive misalignment in the weld joint marriage point.
7. Welded Stop/Starts - Shrinkage distortion at an area of a mill stop/start results in a nonequilibrium condition when the mill is started. This has led to areas with weld joint offsets greater than $1 / 32^{\prime \prime}$.
8. Welded coil splices - Shrinkage distortion at an area of a coil splice may cause a variation in the fairing of the coll and tube edges at the weld joint marriage point. This has led to areas with weld joint offsets greater than $1 / 32^{\prime \prime}$.

Global Analysis of the Peam Tube

The stresses in the beam tube were determined by a global analysis of the beam tube module. The global analysis of the beam tube was performed in the original Design and Qualification Test contract. The beam tube analysis was presented in CDRL \#15, DRD \#9, Item IV entitled "Design Calculations and Analyses" dated April 11, 1994. After award of the construction option, the original analysis was reviewed to ensure that the design basis was consistent with the proposed final confguration. A review of the analysis was presented in DRD \#3, CDRL \#10 \& 24 entited "Design Document Revisions - Design Calculations" dated March 12, 1996 and June

BEAM TUBE MODULE SPIRAL SEAM OFFSET TECHNICAL REVIEW FEBRUARY 20,1997
Revised April 14. 1997

28,1996 . The stresses in the current configuration are less than those predicted by the original design.

The governing load condition for the beam tube is the combination of the beam tube dead load, differential settlement of the fixed support, and vacuum during the beam tube bake out. The maximum allowable differential settlement is limited to keep the longitudinal beam tube stresses under the ASME allowable longitudinal stress of 5.9 ksi .

Stresses Due to Bake Out

Bake out of the beam tube causes compression of the expansion joints due to thermal expansion of the beam tube. This results in a direct compressive load on the beam tube accompanied by relatively small moments at the fixed support due to load eccentricity. The original axial load due to expansion joint compression was based on an estimated maximum expansion joint spring rate of 10,062 pounds per inch. The maximum actual spring rate measured to date is 5,301 pounds per inch. As such, axial load in the beam is approximately 15,000 pounds less than the value used for design. Based on the original design spring rate, the maximum longitudinal stress due to bake out was 1.7 ksi . Based on the current maximum spring rate, the maximum longitudinal stress due to bake out is 1.0 ksi .

Stresses Due to Beam Dead Load

The dead load of the stiffened beam tube is 75 pounds per foot. The design dead load is 91 pounds per foot to include the insulation dead load. The dead load results in normal beam bending stresses in the beam tube. The beam bending stresses were determined by finite element analysis in the original design. The finite element analysis modeled the continuous beam tube on fixed and guided supports with expansion joints at the guided supports. The shear, moments, and deffections of the beam tube due to the dead load are shown in sketch \#1. As shown in the sketch, the maximum moment exists at the fixed support. The maximum longitudinal stress due to dead load bending is 2.2 ksi .

Stresses Due to Differential Settlement

Differential settlement also produces bending stresses in the beam tube. Although not shown on the sketch, the effects of differential settlement are limited to the sections immediately next to the settlement location due to the rotational flexibility of the expansion joints. Differential settlement of the fixed support produces the greatest bending moments in the beam tube. The shear loads, bending moments, and deflections of the beam tube due to differential settlement of the fixed support are shown in sketch \#2. The shear loads, moments, and deflections associated with the combined dead load and differential settlement of the fixed support are shown in sketch \#3. The dead load plus upward differential settlement of any fixed support between guided supports produces the greatest bending moments in the beam tube. Based on the original design, differential settlement of the fixed support of .56 "produces a longitudinal bending stress of 2.0 ksi.

BEAM TUBE MODULE
SPIRAL SEAM OFFSET TECHNICAL REVIEW

Stresses Due to Vacuum Conditions
Vacuum in the beam tube causes an external pressure on the beam tube resulting in compressive circumferential stresses. In addition, due to the expansion joint configuration, the extemal pressure at the expansion joint also produces slight longitudinal tensile stresses in the beam tube. The circumferential compressive stress in the beam tube due to vacuum is 2.9 ksi .

Finite Element Analvsis of the Seam Offset

Analysis Description and Results

A finite element analysis of a beam tube section with a $3 / 32^{\prime \prime}$ offset has been performed and compared to the analysis of an idealized beam tube section. The offset model consists of a section of beam tube between stiffeners with a $3 / 32$ " offset around the full circumference at the midpoint between the stiffeners. The idealized model consists of half of a section of beam tube between stiffeners which is perfectly cylindrical. The analysis includes elastic-plastic material behavior and geometric non-linearity. Both models use a non linear approximate stress strain curve for A 240 type 304 L stainless steel at $300^{\circ} \mathrm{F}$. Both models are subjected to a constant external pressure of 14.7 psi while the axial load is increased from zero to the maximum capacity. The axial load is uniform around the circumference. The analysis report is provided in appendix A.

As noted earlier, the ASME allowable longitudinal stress is 5.9 ksi . An axial load of 113.8 kips is required to induce this stress around the entire circumference. The maximum load capacity of the idealized model and the offset model with a 14.7 psi external pressure are given below. The axial displacement over the 30° stiffener spacing and the maximum radial displacement due to the maximum axial load are also provided below.

	Max Axial Load	Axial Displacement	Radial Displacement
Idealized Model:	374.0 kips	$.0548^{\prime \prime}$	$.0173^{\prime \prime}$
Offset Model:	230.4 kips	$.0170^{\prime \prime}$	$.0165^{\prime \prime}$

These maximum loads are factors of 3.286 and 2.024 over the equivalent allowable design load for the idealized model and offset model, respectively.

Discussion of Analysis Results

In general, the design of shell structures involves the determination of predicted bucking stresses in the structure and the application of safety factors to the predicted buckling stresses to ensure stablity. The predicted buckling stresses are based on classical linear theory for idealized shapes reduced by capacity reduction factors and plasticity reduction factors. Capacity reduction factors account for the effects of imperfections. Plasticity reduction factors account for non linearity in material properties. The analysis contains non linear material properties for both the idealized model and the offset model. The idealized model does not contain any imperfections and as such, the predicted buckling stress of an actual tube section is less than the maximum stress in

BEAM TUBE MODULE SPIRAL SEAM OFESET TECHNICAL REVIEW

the idealized model. The analysis of the offset model determines the axial load capacity reduction associated with the seam offset of $3 / 32^{\prime \prime}$ over the entire circumference. The analysis predicts that the seam offset will cause a 38.4% reduction in the maximum axial stress of an idealized cylinder.

As stated above, the finite element analysis detemined the reduction factor associated with a $3 / 32^{\prime \prime}$ offset compared to an idealized perfect cylinder. For analysis, the $3 / 32^{*}$ offset exists around the full circumference of a tube section at the mid point between circumferential vacuum stiffeners. The maximum axial compressive stress was 61.6% of the maximum axial compressive stress of the idealized perfect cylinder.

Fabricated structures can not reach the stress levels of idealized shapes due to geometric imperfections and non linear material behavior. API Bulletin 2U contains formulas for the predicted buckling stresses of cylindrical shells including the capacity reduction factors for geometric imperfections and plasticity reduction factors for non linear material properties. The predicted inelastic longitudinal buckling stress for the beam tube modules per API 2U, formula 4.7 is 12.3 ksi without superimposing the extemal pressure. The finite element analysis of the $3 / 32$ " offset predicted a longitudinal buckling stress of 2.024 times 5.9 ksi times or 11.9 ksi with the presence of an extemal pressure. This indicates that an offset of $3 / 32$ " around the entire circumference causes less of a reduction in the predicted longitudinal buckling stress that of the general shell imperfections allowed by bulletin 20 .

Implementation of Analysis Results

The spiral seam offset will be limited to $3 / 32$ " in all areas. The longitudinal distance from any offset greater than $1 / 32 \%$ to a circumferential stiffener will not be greater than 7.5 . When offset areas exist at a distance greater than 7.5° from a circumferential stiffener, an additional circumferential stiffener will be attached at the midooin between normal circumferential stiffeners the-axear highest longitudinatcompressive-stress. Based ort the globur malysis, the
 the betom of the beam nbe. As show in the ghobal andysis, the longitudinal-swesf-decreases rapidy going away frem the fred support The maximum bending moment in the bean tube is aproximately 515 foot lepe-for-

BEAM TUBE MODULE SPIRAL SEAM OFFSET TECHNICAL REVIEW

Factors of Safety

As noted earlier, the design of shell structures involves the determination of predicted buckling stresses in the structure and the application of safety factors to the predicted buckling stresses to ensure stability. The original design determined the predicted longitudinal and circumferential compressive stresses and checked the interaction of the stresses per API 2 U . API 2 U recommends a factor of safety of 1.5 for the combined stresses. The factor of safety on the original design per API 2U was 1.55. However, the actual factors of safety of the beam tube modules is in fact much greater due to the nature of the beam tube loading and the offset configuration as described below.

Nature of Beam Tube Loading

The circumferential compressive stresses in the beam tube are due to vacuum conditions and can not exceed the current design values. The longitudinal stresses are due primarily to beam bending moments. Beam bending stresses could exceed the current design values if differential settlements exceed the current limits. However, the predicted bending stresses were determined based on linear elastic behavior. In the beam tube module, the bending stresses will be less than the predicted stresses due to the non linear properties of the material. Greater differential settlements will be accompanied by proportionally lower bending stresses. Differential settlements of over 2 " would be required to reach the maximum compressive stress in the shell along the bottom of the shell. In addition, the bending capacity of the beam tube would continue to increase long after the maximum compressive stress was reached a the bottom of the tube.

Offset Configuration

The offsets in the beam tubes are along the spiral seam. The spiral seam makes an angle with the crournference of 9° and 13.5° for $24^{\prime \prime}$ wide and 36° wide coll material, respectively. The maximum axial compressive stress capability of a section containing a spiral offset is significantly higher than that of a section with a full circumferential offset.

