

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- <u>E1100300</u>	LIGO	May 16 th , 2014
aLIGO BSC-ISI, Pr	e-integration T	esting report,
Unit 7 - Pha	ase I (post-asse	mbly)
H	E1100300 – V1	
	Jim Warner	
Adva This is a	tion of this document: Inced LIGO Project n internal working note e LIGO Laboratory	
California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129	LIG Ca Pl	setts Institute of Technology D Project – NW22-295 185 Albany St mbridge, MA 02139 none (617) 253-4824
Fax (626) 304-9834 E-mail: info@ligo.caltech.edu		Fax (617) 253-7014 ail: info@ligo.mit.edu
LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106	Li P	Livingston Observatory P.O. Box 940 vingston, LA 70754 hone 225-686-3100 Fax 225-686-7189

Fax 509-372-8137

Table of contents:

I. Pre-Assembly Testing	4
II. Tests to be performed during assembly	
III. Tests to perform after assembly	
IV. BSC-ISI testing Summary	

Introduction

The BSC-ISI testing is performed in three phases:

1) BSC-ISI, Pre-integration Testing, Phase I (post-assembly)

2) BSC-ISI, Pre-integration Testing, Phase II: Tests done after Transport (and possible storage), during mating phase with Suspensions, before insertion.

3) BSC-ISI, Integration Phase Testing: Procedure and results related to the commissioning in the chamber.

This document presents the series of tests (Phase I) performed on the fourth BSC-ISI assembled at LHO.

The testing procedure document E1000486-v5 was used.

All results are posted on the SVN at: *https://svn.ligo.caltech.edu/svn/seismic/BSC-ISI/X1/Unit_7/*

The following type of document can be found in the SVN:

- Excel spreadsheet (.xls)
- Data location
- Figures location
- Masses distribution scheme (ppt)

I. Pre-Assembly Testing

o Step 1 - CPS Test and calibration – E1100369

CPS sensors are tested (calibration and noise test) at MIT before being cleaned and baked at LHO. The list of installed sensors used for testing (phase I) are reported in step II.3.

All data related to the CPS testing can be found in the SVN at /svn/seismic/Common/Data/aLIGO_BSC_ISI_CPS/

Test result:

Passed: <u>X</u> Failed: <u>Waived</u> :

0 Step 2 - GS13 – Inspection/Assembly – E1000058 – E1100740

GS13 are tested and podded at LLO.

We had several GS-13s fail on this unit. Initially, 1h and 1v, then another vertical. A third vertical failed after a transfer function with too high drive.

The list of installed sensors used for testing (phase I) are reported in step II.3.

All the data related to GS-13 post podding testing can be found in the SVN at : /svn/seismic/Common/Data/aLIGO_GS13_TestData/PostMod_TestResults_PDFs

E1000058 and E1100740 spreadsheets provide the status of each individual GS-13 at LLO site for HAM-ISI and BSC-ISI and the installation location of the geophones.

Test result:

Passed: <u>X</u> Failed: <u>Waived</u> :

0 Step 3 - L4C – Inspection/Assembly – E1000136 – E1100740

L4C are tested and podded at LLO. The list of installed sensors used for testing (phase I) are reported in step II.

One vertical L4C failed.

All the data related to L4C post podding testing can be found in the SVN at : /svn/seismic/Common/Data/aLIGO_L4C_TestData/TestResults_PDFs/

Test result:

0 Step 4 - T240 – Inspection/Assembly - E1100326 – E1100740

T240 are tested and podded at LLO. We haven't had to replace the T240s on this Unit, and these are the ones with the new Voltage Regulator, it seems that they are working fine and keep the pressure sensor from dying. The list of installed sensors used for testing (phase I) are reported in step II.3.

All the data related to T240 post podding testing can be found in the SVN at : seismic/Common/Data/aLIGO_T240_TestData/AsReceived_TestResults_PDFs.

E1100326 and E1100740 spreadsheets provide the status of each individual T240 at LLO site for BSC-ISI and the installation location of the geophones.

Test result:

Passed: <u>X</u> Failed: <u>Waived</u> :

0 Step 5 - Actuators - T0900564 - T1100234 - E1100741

The list of installed sensors used for testing (phase I) are reported in step II.2 Large actuators data can be found at: T0900564. Actuator inventory is made at Section II – Step 2. Small actuators data can be found at: T1100234. Actuator inventory is made at Section II – Step 2.

Test result:

II. Tests to be performed during assembly

0 Step 1 - Test stand level

The Test Stand was transformed and re-leveled to dock a BSC-ISI.

Test result:

Passed: <u>X</u> Failed: <u>Waived</u> :

.....

0 Step 2 - Actuators Inventory

The actuators S/N are reported in the table below. Further information can be found in T0900564 and T1100234.

Stage 1		Stage 2	
Actuator	Actuator S/N	Actuator	Actuator S/N
ST1 - H1		ST2 - H1	
ST1 - H2		ST2 - H2	
ST1 - H3		ST2 - H3	
ST1 - V1		ST2 - V1	
ST1 - V2		ST2 - V2	
ST1 - V3		ST2 - V3	

Table 1 - Actuators' inventory

Test result:

Passed: <u>X</u>

Failed: ____

Waived :

0 Step 3 - Sensors Inventory

The sensors S/N are reported in the table below.

CPS Stage 1	CPS S/N	ADE board serial #
H1		
H2		
H3		
V1		
V2		
V3		

 Table 2 - Capacitive position sensors' inventory – Stage 1

CPS Stage 2	CPS S/N	ADE board serial #
H1		
H2		
H3		
V1		
V2		
V3		

 Table 3 - Capacitive position sensors' inventory – Stage 2

Geophones GS13	Serial Number	POD
H1		
H2		
H3		
V1		
V2		
V3		

Table 4 - GS13 inventory

Geophones L4C	Serial Number	POD
H1		
H2		
H3		
V1		
V2		
V3		

Table 5 - L4C inventory

Geophones T240	Serial Number	POD
1		
2		
3		

Table 6 - T240 inventory

Test result:

o Step 4 - Electronics Inventory

Write down in the table below all serial numbers all the electronic equipment:

Hardware	Ligo reference	S/N
Interface Chassis - Corner 1	D1002432	S110223
Interface Chassis - Corner 2		S1102224
Interface Chassis - Corner 3		S1102218
Anti-Alliasing Chassis - Corner 1	D1002693	S1102693
Anti-Alliasing Chassis - Corner 2		S1102694
Anti-Alliasing Chassis - Corner 3		S1102679
Anti-image Chassis	D070081	S1000250
Binary Input Chassis	D1001726	S1101309
Binary Input Chassis		S11031308
Binary Output Chassis	D1001728	S1101347
T240 Interface - Corner 1	D1002694	S1101040
T240 Interface - Corner 2		S1101838
T240 Interface - Corner 3		S1101839
I/O Chassis	n/a	
Coil driver Pod 1	D0902744	S1000266
Coil driver Pod 2		S1000269
Coil driver Pod 3		S110692

Table 7 - Electronic equipment

Note:

Test result:

Passed: <u>X</u> Failed: <u>Waived</u> :

0 Step 5 - Check level of Stage 0 after top-bottom plate assembly

Note: This test has not been performed. The test stand was leveled before assembly began.

Test result:

Passed: ____ Failed: ____ Waived : X

o Step 6 - Check gaps under the blade posts

Test result:

0 Step 7 - Blade post shim thickness

This table shows the shims thickness installed under the lockers.

Stage 0-1		Stage 1-2	
Lockers	Shim thickness (mil)	Lockers	Shim thickness (mil)
Corner 1	119	Corner 1	117
Corner 2	125	Corner 2	118
Corner 3	130	Corner 3	120

Table 8 - Shims thickness

Acceptance criteria: Both D0901805 Stage 0-1 Locker Shims & D0902551 Stage 1-2 Locker Shims goes from .110" up to .130" with an increment of .001".

 Test result:
 Passed: X
 Failed: Waived :

 0
 Step 8 - Blade 0-1 post launch angle
 Vaived :

 Test result:
 Passed: Failed: Waived :
 Vaived :

 0
 Step 9 - Gap checks on actuators
 Vaived :

 Test result:
 Passed: X
 Failed: Waived :

0 Step 10 - Mass budget

Note: The second version of the blade spacers was used. Consequently, the additional payload is expected to be close from design.

Six vibration absorbers were installed on stage 1. Masses on stage 2 are resting on Viton pads.

Stage 1:

The stage 1 payload is reported in the table below:

Corner 1 Corner 2 Corner 3

Stage 1		
Location	Weight (lb)	
Corner 1		
Corner 2		
Corner 3		
Total		

Table 9 - Payload Stage 1

Nominal payload on stage 1: 109Kg - 240lb

Additional payload on stage 1 is 48 kg (107lb) less than expected but good enough. Nominal mass of stage 1=916Kg - 2019lb

Stage 2:

The stage 2 payload is reported in the table below:

Mass Budget	Quantity	Weig ht	Unit	Weight (lb)
	3	610	lb	1830
	2	233	lb	466
type 0			lb	
type 1			lb	
type 2			lb	
type 3			lb	
type 4			lb	
type 5			lb	
type 6			lb	

Table 10 - Payload Stage 2

Nominal payload: 1183.4Kg – 2609lb Total nominal mass of Stage 2: 2913.9Kg – 6424lb Additional stage 2 payload is 30lb lighter than the design.

Error mass on stage 0-1 blades: -(30+107)/(6424+2019) = -1.6%

The Overall error on the weight of the payload is really low.

Test result:

0 Step 12 – Cables inventory – E1100822

The final Class A cables have been used for the testing of this Unit.

DCC Number	Description	Serial Number	Location	Inventory date	Tested
D1100154	25-pin M-to-two 9-pin F straight		L4C corner2		YES
D1100155	25-pin M-to-two 9-pin F straight		GS-13 corner2		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St1 V3		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St2 V2		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St2 H3		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St2 H2		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St1 H2		YES
D1100150	2-wire, 14awg 2 pins to 3-pin F		Act St1 H3		YES
D1100150	2-wire, 14awg 2 pins to 3-pin F		Act St1 V3		YES
D1100150	2-wire, 14awg 2 pins to 3-pin F		Act St1 V2		YES
D1100150	2-wire, 14awg 2 pins to 3-pin F		Act St1 V1		YES
D1100150	2-wire, 14awg 2 pins to 3-pin F		Act St1 H2		YES
D1100150	2-wire, 14awg 2 pins to 3-pin F		Act St1 H1		YES
D1100151	2-wire, 14awg 2 pins to 3-pin F		Act St2 H2		YES
D1100151	2-wire, 14awg 2 pins to 3-pin F		Act St2 V2		YES
D1100151	2-wire, 14awg 2 pins to 3-pin F		Act St2 H3		YES
D1100151	2-wire, 14awg 2 pins to 3-pin F		Act St2 V3		YES
D1100151	2-wire, 14awg 2 pins to 3-pin F		Act St2 V1		YES
D1100151	2-wire, 14awg 2 pins to 3-pin F		Act St H1		YES
D1100152	25-pin F-to-25-pin F		T240 corner3		YES
D1100152	25-pin F-to-25-pin F		T240 corner1		YES
D1100152	25-pin F-to-25-pin F		T240 corner2		YES
D1100153	25-pin F-to-25-pin F		L4C corner2		YES
D1100153	25-pin F-to-25-pin F		GS-13 corner3		YES
D1100153	25-pin F-to-25-pin F		L4C corner3		YES
D1100153	25-pin F-to-25-pin F		GS-13 corner2		YES
D1100153	25-pin F-to-25-pin F		L4C corner1		YES
D1100153	25-pin F-to-25-pin F		GS-13 corner1		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St2 V3 ext		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St2 H1 ext		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St1 V1		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St1 H3 ext		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St1 H1 ext		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St1 V2 ext		YES
D1100148	2-wire, 14awg 3-pin M to 3-pin F		Act St2 V1 ext		YES
D1100154	25-pin M-to-two 9-pin F straight		L4C corner1 ext		YES
D1100155	25-pin M-to-two 9-pin F straight		GS-13 corner1		YES
D1100155	25-pin M-to-two 9-pin F straight		GS-13 corner3		YES
D1100154	25-pin M-to-two 9-pin F straight		L4C corner3		YES

Test result: Pas	sed: <u>X</u>	Failed:	Waived:
------------------	---------------	---------	---------

0 Step 13 - Cable routing

The final Class A cables have been used for the testing of this Unit. The cabling has been done following <u>E1101027 aLIGO BSC-ISI Cable Routing Manual</u>.

Passed: <u>X</u> Failed: <u>Waived</u> :

III. Tests to perform after assembly

o Step 1- Geophones pressure readout

Raw pressure measured by the geophones is reported in the table below:

	Pressure (kPa)			
Sensors	Corner 1	Corner 2	Corner 3	
ST1-L4C-P				
ST1-L4C-D				
ST1-GS13-P				
ST1-GS13-D				
ST1-T240-P				

Table 11 - Raw Pressure

A screenshot of the MEDM pressure screen is saved in the Misc directory for Unit 6

Note: The T240's chassis has the old gain for the pressure sensors.

Test result:

Test result:

0 Step 2- Set up sensors gap – Locked vs unlocked position

During this step, sensors gap are adjusted. This step considers that the lockers have been finely setup during assembly.

	Table locked		Table unlocked		Difference loc unlocked	
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Std deviation	Offset (Mean)	mil
ST1 - H1	-101	14	54	38	-156	-0.19
ST1 - H2	70	7	509	18	-440	-0.52
ST1 - H3	-234	15	-138	23	-96	-0.11
ST1 - V1	-459	18	-649	26	190	0.23
ST1 - V2	-109	13	-56	33	53	-0.06
ST1 - V3	-550	9	-250	32	-300	-0.36
ST2 - H1	1133	55	1125	25	8	0
ST2 - H2	1669	43	1638	34	31	0.01
ST2 - H3	1160	43	1319	22	-159	-0.05
ST2 - V1	-134	43	-188	81	54	0.02
ST2 - V2	-88	59	-159	90	71	0.02
ST2 - V3	454	40	536	84	82	-0.02

Table 12 - Capacitive position sensors readout after gap set-up

Acceptance criteria:

- In the locked position, all mean values must be lower than 400 counts for stage 1 CPS and 1600 counts for stage 2 CPS on Dataviewer (a bit less than .0005").
- In the locked position, all standard deviations below 25 counts for stage 1, 100 counts for stage 2
- Absolute values of the difference between the unlocked and the locked table must be below: **Stage 1**
 - 0 1600 cts for horizontal sensors (~0.002")
 - 0 1600 cts for vertical sensors (~0.002")

Stage 2

- 0 6500 cts for horizontal sensors (~0.002")
- o 6500 cts for vertical sensors (~0.002")
- Considering the acceptance criteria of step 2, all mean values must be lower than **Stage 1**
 - 0 2000 cts for horizontal sensors (~0.0025")
 - 0 2000 cts for vertical sensors (~0.0025")
 - Stage 2
 - 0 8000 cts for horizontal sensors (~0.0025")
 - 0 8000 cts for vertical sensors (~0.0025")

Note: The CPS will be readjusted once SUS will installed

Test result:

Passed: <u>X</u> Failed: ____

Waived :

o Step 3 - Measure the Sensor gap

Test Failure mitigation:

This test was not performed. The sensor gaps have not been measured. These sensors have already been tested at LASTI. Moreover, risks of scratching the target are so high that we preferred not performing this test. In the future, this test will be removed from the testing procedure.

Test result:	Passed:	Failed:	Waived :	X
Step 4- Performance of the	e limiters			

0 Step 4.1 - Test N°1 - Push "in the general coordinates Z/RZ"

Test result:

Passed: ____ Failed: ____ Waived : X

Sensors	Push in negative direction	Push in positive direction	Mil	Mil	Railing	Actuator Gap Check
ST1 - H1	-18500	16000	-24	21		X
ST1 - H2	-18000	18000	-21	20		X
ST1 - H3	-19000	18500	-20	19		X
ST1 - V1	-24500	24000	-29	29		X
ST1 - V2	27000	25000	-32	30		X
ST1 - V3	-26500	25000	-32	30		X
ST2 - H1					Х	X
ST2 - H2					Х	X
ST2 - H3					Х	X
ST2 - V1					Х	X
ST2 - V2					Х	X
ST2 - V3					Х	X

0 Step 4.2 - Test N°2 – Push "locally"

Table 13 - Stages range of motion – "Push locally"

Acceptance criteria:

- The vertical sensor readout must be positive when the optical table is pushed in the +Z direction
- The horizontal sensor readout on Stage 2 must be positive when the optic table is pushed in the +RZ direction
- Step 4.2
 - Absolutes value of all estimated motions must be higher than 15000counts for stage 1 (~0.018")
 - Absolutes value of all estimated motions must be higher than 32000counts for stage 2 (~0.010")

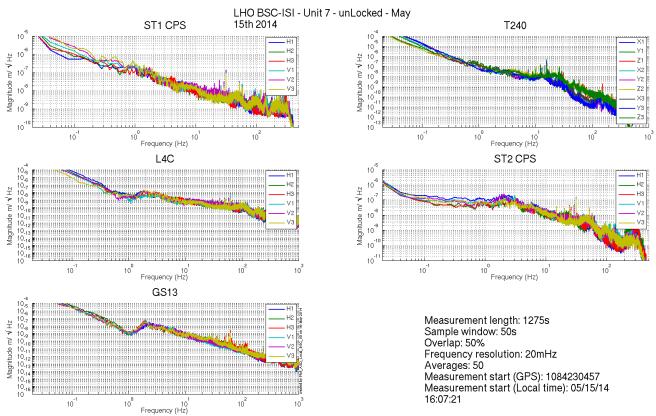
Test result:

0 Step 5 - Sensors spectra

The geophones spectra have been measured and can be found in the SVN:

seismic/BSC-ISI/X1/Unit_7/Data/Spectra/Undamped/

- X1 ISI ITMX ASD m LOC CPS T240 L4C GS13 2014 05 15 125407.mat (Unlocked)
- <u>X1 ISI ITMX ASD m LOC CPS T240 L4C GS13 2014 05 15 160721.mat</u> (Locked)


seismic/BSC-ISI/X1/Unit_7/Data/Figures/Spectra/Undamped/

- X1 ISI ITMX ASD m LOC CPS T240 L4C GS13 2014 05 15 125407.fig (Unlocked)
- <u>X1 ISI ITMX ASD m LOC CPS T240 L4C GS13 2014 05 15 160721.fig</u> (Locked)

Stage locked – unlocked

The spectra are measured in two different configurations:

- Stage 1 locked Stage 2 locked
- Stage 1 unlocked Stage 2 unlocked

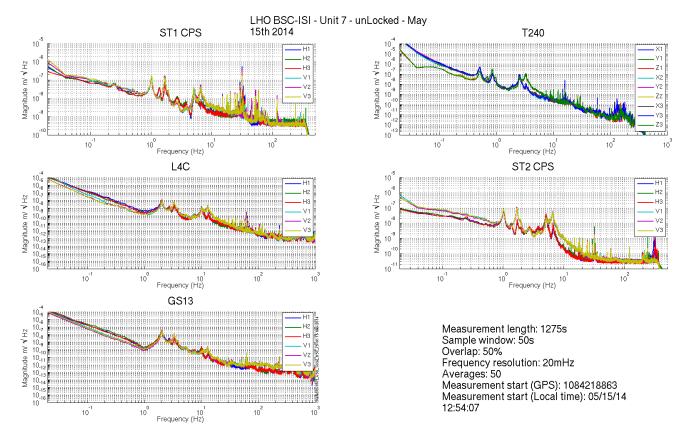


Figure 2: Calibrated Spectra Stage 1 Unlocked and Stage 2 Unlocked

Stage Tilted

The Spectra are measured when the ISI is unlocked a mass is placed on stage 2 to tilt Stage 1 and Stage 2.

The six configurations are the following in six different configurations:

- Mass placed in the actuator pocket at corner 1
- Mass placed in the pocket under the blade 0-1 at corner 1
- Mass placed in the actuator pocket at corner 2
- Mass placed in the pocket under the blade 0-1 at corner 2
- Mass placed in the actuator pocket at corner 3
- Mass placed in the pocket under the blade 0-1 at corner 3

/seismic/BSC-ISI/X1/Unit_7/Data/Spectra/Undamped/

- X1 ISI ITMX ASD m L4C GS13 Stage Tilted 2014 05 14.mat

seismic/BSC-ISI/X1/Unit_7/Data/Figures/Spectra/Undamped/

- X1 ISI ITMX Tilted ASD m LOC ST1 L4C 2014 05 14.fig
- X1 ISI ITMX Tilted ASD m LOC ST2 GS13 2014 05 14.fig

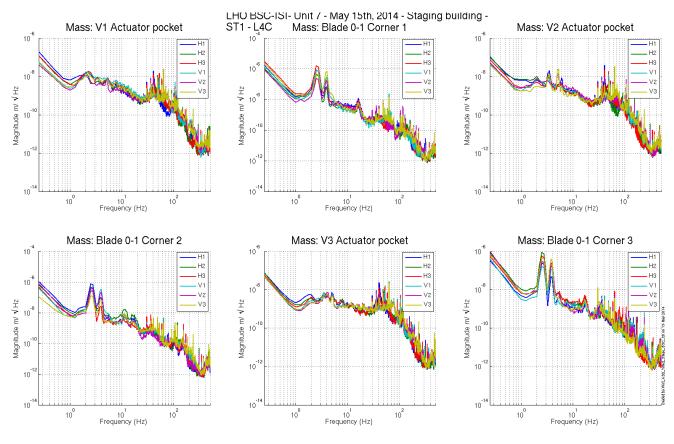
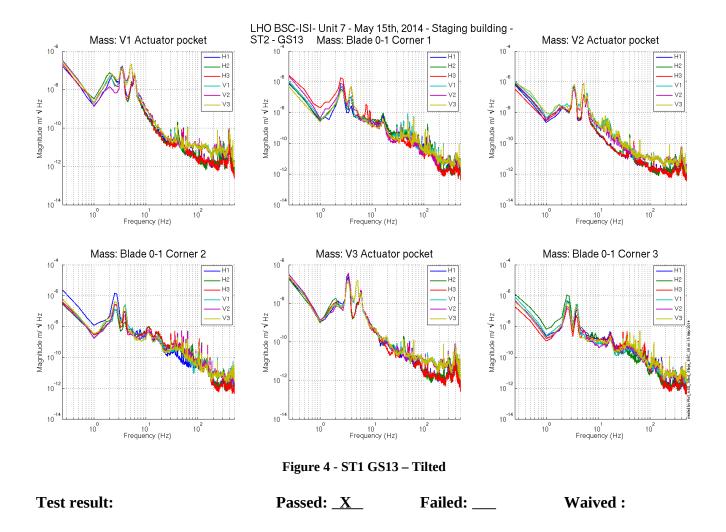



Figure 3 - ST1 L4C – Tilted

o Step 6 - Coil Driver, cabling and resistance check

Resistances of the couple (actuators + in vacuum cables) were measured using the voltage and current the coil drivers read back. Resistances of the couple actuator + in-vacuum cables are reported in the table below:

	Resistance
Actuator	(Ω)
ST1 H1	6.5
ST1 H2	6.5
ST1 H3	6.3
ST1 V1	6.3
ST1 V2	6.1
ST1 V3	6.4
ST2 H1	10.5
ST2 H2	10.1
ST2 H3	9.8
ST2 V1	10.6
ST2 V2	10.2
ST2 V3	10.4

Table 14 - Actuator Resistance

Acceptance criteria:

- For the actuators of stage 1, the measured resistance between the middle pin and one side pin must be 6.3 +/-0.5 ohms
- For the actuators of stage 2, the measured resistance between the middle pin and one side pin must be 10.3 +/-0.5 ohms
- Actuator neutral pins must be connected on pin #1 (left side pin of the plug)
- Actuator drive pins must be connected on pin #2 (middle pin of the plug)
- Actuator ground shield pins must be connected on pin #3 (right pin of the plug)
- All LEDs on the coil driver front panel must be green the binary input bit must be in the upper state.

Test result:

Passed: X	Failed:	Waived :
1 doocdi _11_		mainea i

o Step 7- Actuators Sign and range of motion (Local drive)

0 Step 7.1 - Actuators sign

Test result:

Passed: <u>X</u> Failed: <u>Waived</u> :

0 Step 7.2 - Range of motion - Local drive

In this step, range of motion of the two stages is checked when applying a local drive (30000 counts) on actuators.

seismic/BSC-ISI/X1/Unit_7/Data/Static_Tests/ :

X1_ISI_ITMX_Range_Of_Motion_20131210.mat

Sensor readout (counts)	Negative drive	no drive	Positive drive	Amplitude count	mil
ST1 - H1	-16779	67	16459	33239	40
ST1 - H2	-16533	527	15773	32307	38
ST1 - H3	-15789	-127	16718	32505	39
ST1 - V1	-15426	-662	14167	29594	35
ST1 - V2	-14853	-66	14740	29593	35
ST1 - V3	-14741	-284	14198	28939	34
ST2 - H1	-9087	1115	11308	20396	6.1
ST2 - H2	-8414	1638	11701	20116	6
ST2 - H3	-8453	1403	11220	19674	5.9
ST2 - V1	-12624	-227	12147	24772	7.4
ST2 - V2	-12432	-197	12019	24452	7.3
ST2 - V3	11646	454	12525	24171	7.2

Table 15 - Range of motion - Local drive

Acceptance criteria:

- Amplitude p-p must be at least 30000 counts (0.035") for Stage 1 CPS H
- Amplitude p-p must be at least 25000 counts (0.03") for Stage 1 CPS V
- Amplitude p-p must be at least 18000 counts (0.005") for Stage 2 CPS H
- Amplitude p-p must be at least 22000 counts (0.006") for Stage 2 CPS V
- Signs of actuators drive and sensors read out have to be the same

Note: The motion of the platform can be computed. For a 30000 counts drive in the +Z direction, the platform should move by 12.6 mil on Stage 1 and 3.6mil on Stage 2.

In the Cartesian basis, the platform should move (calculation) by:

Stage 1 - Platform move for 32K		
counts drive:	12.63	mil
Stage 2 - Platform move for 32K		
counts drive:	3.59	mil

Note: The range of motion in the case of a "local drive" is in agreements with the measurements done on the previous units.

 Test result:
 Passed: X
 Failed: Waived :

 0
 Step 8 - Vertical Sensor Calibration

 Not done.
 Yest result:

 Passed: Yest
 Failed: Yest

 Waived :
 Xaived :

0 Step 9 - Vertical Spring Constant

This test is realized by loading the ISI when one stage is locked and using the capacitive position sensors as reference.

The stiffness measurements of the spring are reported in the tables below. The nominal blade stiffness are:

- Stage 1: 1241lb/in
- Stage 2: 1465lb/in

Blade Stage 0-1

Stage 2 Locked & Stage 1 Unlocked. Stage 2 is loaded with 3 x 10kg masses and the measurements are repeated three times (by rotating the masses).

	Mean No load	Mean Load	Diff	
V1	88	-14728	14816	
V2	-3704	-18105	14401	
V3	855	-15103	15868	
			15028	с

15028 count 18.1 mil 1219 lb/in -1.7 %

Blade Stage 1-2

Stage 1 Locked & Stage 2 Unlocked. Stage 2 is loaded with 3 x 5Kg masses and the measurements are repeated three times (by rotating the masses).

-5.4

%

	Mean no load	Mean load	Diff 1	
V1	493	-25864	26357	
V2	272	-26023	26296	
V3	679	-25304	25984	
			26212	coun
			7.9	mil
			1386	lb/in

Test mitigation: Blades are softer than design.

Test result:Passed: XFailed: Waived :

o Step 10 - Static Testing (Tests in the local basis)

The static tests results are reported in the SVN at :

seismic/BSC-ISI/X1/Unit_7/Data/Static_Tests/

- X1_ISI_ITMX_Offset_Local_Drive_20131210.mat

The table below shows the main and the cross-coupling when the actuators are driven in the local basis:

		Sensors					
		ST1 - H1	ST1 - H2	ST1 - H3	ST1 - V1	ST1 - V2	ST1 - V3
Actua tors	ST1 - H1	4204	1713	1681	16	-9	-39
	ST1 - H2	1608	4176	1689	-7	9	-6
	ST1 - H3	1701	1660	4123	-19	-11	-2
	ST1 - V1	-51	-192	39	3451	-649	-648
	ST1 - V2	86	76	-152	-626	3450	-634
	ST1 - V3	-173	111	41	-639	-600	-3363

 Table 16 - Static test - Local to local - Stage 1

		Sensors					
		ST2 - H1	ST2 - H2	ST2 - H3	ST2 - V1	ST2 - V2	ST2 - V3
Actuat ors	ST2 - H1	2401	359	354	-5	-37	0.9
	ST2 - H2	369	2371	354	-35	-14	-16
	ST2 - H3	354	347	2315	-47	-26	-5
	ST2 - V1	77	130	-229	-2880	288	-47
	ST2 - V2	-200	83	130	-57	2844	293
	ST2 -V3	125	-205	83	271	-79	2815

Table 17 - Static test - Local to local - Stage 2

Acceptance criteria:

- Main couplings readout must be positive
- Comparison with the reference tables:
 - o Main coupling differences mustn't exceed 200 counts
 - Cross coupling differences mustn't exceed 50 counts

Test result: Passed: <u>X</u>

Failed: ____ Waived :

0 Step 11- Static Testing - In the general coordinate basis (Static test -CPS)

Not performed.

Test result:

Passed: ____ Failed: ___ Waived : X

0 Step 11.2 – Base change matrices from Cartesian to Cartesian

Not performed.

Test result:	Passed:	Failed:	Waived :	Х
i est i esuit.	I usseu:		wanted .	

0 Step 12 - Linearity test

The "Linearity test" was performed twice (rearranging the cables). The second time, all corners seemed to respond similarly.

The linearity test data can be found in the SVN at: /seismic/BSC-ISI/X1/Unit_7/Data/Linearity_Test/ X1_ISI_ITMX_Linearity_test_20140515.mat

The linearity test figures can be found in the SVN at: /seismic/BSC-ISI/X1/Unit_7/Data/Figures/Linearity_Test/ X1 ISI ITMX Linearity test 20140515.fig - Un 4 - Staging Buil ertical actuators to 15th atege Stage 1 ical CPS 1 H1 V1 H2 V2 Sensor readout (count) Sensor readout (count) 0.5 0.5 ΗЗ VЗ 0 0 -0.5 -0.5 -1 -1 -1 0 1 Actuator drive (count) X 10⁴ Actuator drive (count) $\times 10^4$ -Vertical actuators to Vertical CPS Horizontal actuators to Horizontate Stage 2 -1 H1 V1 H2 V2 Sensor readout (count) Sensor readout (count) 0.5 0.5 ΗЗ VЗ 0 0 -0.5 -0.5 -1 -1 -1 0 1 Actuator drive (count) $\times 10^4$ -1 0 1 Actuator drive (count) X 10⁴ **Figure 5 - Linearity Test**

Slope – Offset:

		Slope	Offset	Average slope	Variation from average(%)
Stage 1	ST1 - H1	0.61	55	0.60	1.72
	ST1 - H2	0.59	451		-0.99
	ST1 - H3	0.59	-88		-0.73
	ST1 - V1	0.49	-799	0.49	0.71
	ST1 - V2	0.49	-56		0.77
	ST1 - V3	0.48	-292		-1.48
Stage 2	ST2 - H1	0.34	1060	0.34	1.63
	ST2 - H2	0.34	155		0.44
	ST2 - H3	0.33	1527		-2.06
	ST2 - V1	0.42	-642	0.41	1.41
	ST2 - V2	0.41	-312		-0.39
	ST2 - V3	0.41	101		-1.03

Table 18 - Slopes and offset of the triplet Actuators - BSC-ISI – Sensors

Acceptance criteria:

- Horizontal and vertical slopes of the triplet actuators x BSC-ISI x sensors: Average slope +/- 2.5%

Test result:

Passed: XFailed: Waived :

0 Step 13 – Transfer functions – Local to Local

Note: two vibration absorbers were installed in corner 1 and 2 vibration absorbers were installed in corner 3. No TMDs were installed on the stage 0-1 blades.

Data files measurement of local to local transfer functions in SVN at:

seismic/BSC-ISI/X1/Unit_7/Data/Transfer_Functions/Measurements/Undamped/

- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST1 CPS 2014 05 14.mat
- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST1 T240 2014 05 14.mat
- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST2 CPS 2014 05 14.mat
- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST2 GS13 2014 05 14.mat
- X1_ISI_ITMX_TF_L2L_Raw_from_ST2_ACT_to_ST1_L4C_2014_05_14.mat
- X1 ISI ITMX TF L2L Raw from ST2 ACT to ST1 T240 2014 05 14.mat
- X1 ISI ITMX TF L2L Raw from ST2 ACT to ST2 CPS 2014 05 14.mat
- X1 ISI ITMX TF L2L Raw from ST2 ACT to ST2 GS13 2014 05 14.mat
- -
- -
- -
- -
- -
- -

Script file for processing and plotting local to local transfer functions in SVN at:

/seisvn/seismic/BSC-ISI/X1/Unit_7/Scripts/Control_Scripts

- Step_1_TF_L2L_Raw_X1_ISI_TST.m

Figures of local to local transfer functions (Main couplings) in SVN at:

/seismic/BSC-ISI/X1/Unit_7/Data/Figures/Transfer_Functions/Measurements/Undamped/

- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST1 CPS 2014 05 14.fig
- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST1 L4C 2014 05 14.fig
- X1_ISI_ITMX_TF_L2L_Raw_from_ST1_ACT_to_ST1_T240_2014_05_14.fig
- X1_ISI_ITMX_TF_L2L_Raw_from_ST1_ACT_to_ST2_CPS_2014_05_14.fig
- X1 ISI ITMX TF L2L Raw from ST1 ACT to ST2 GS13 2014 05 14.fig
- X1 ISI ITMX TF L2L Raw from ST2 ACT to ST1 L4C 2014 05 14.fig
- X1 ISI ITMX TF L2L Raw from ST2 ACT to ST1 T240 2014 05 14.fig
- X1 ISI ITMX TF L2L Raw from ST2 ACT to ST2 CPS 2014 05 14.fig
- X1_ISI_ITMX_TF_L2L_Raw_from_ST2_ACT_to_ST2_GS13_2014_05_14.fig

Measured of local to local transfer functions in the SVN at:

 $/svncommon/seisvn/seismic/BSC-ISI/X1/Unit_7/Data/Transfer_Functions/Simulations/Undamped$

- X1 ISI ITMX TF L2L Raw 2014 05 14.mat

Note 1: The transfer functions are measured from the Output filter bank (excitation variable) to the input (IN1) of the input filter bank. The transfer functions presented below are raw transfer functions

without any electronic compensation of the sensor electronic. The actuator and the coil driver electronic compensation are introduced in these transfer functions.

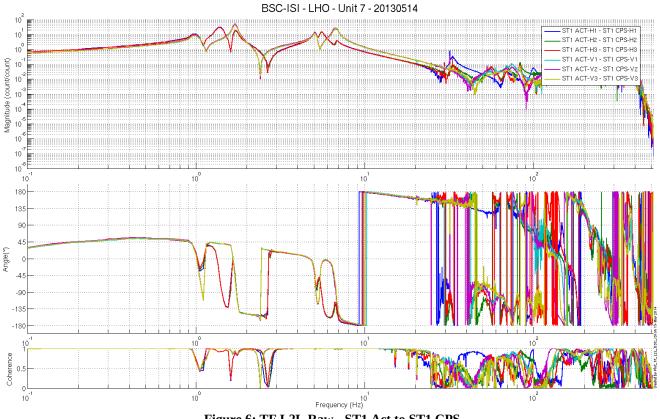
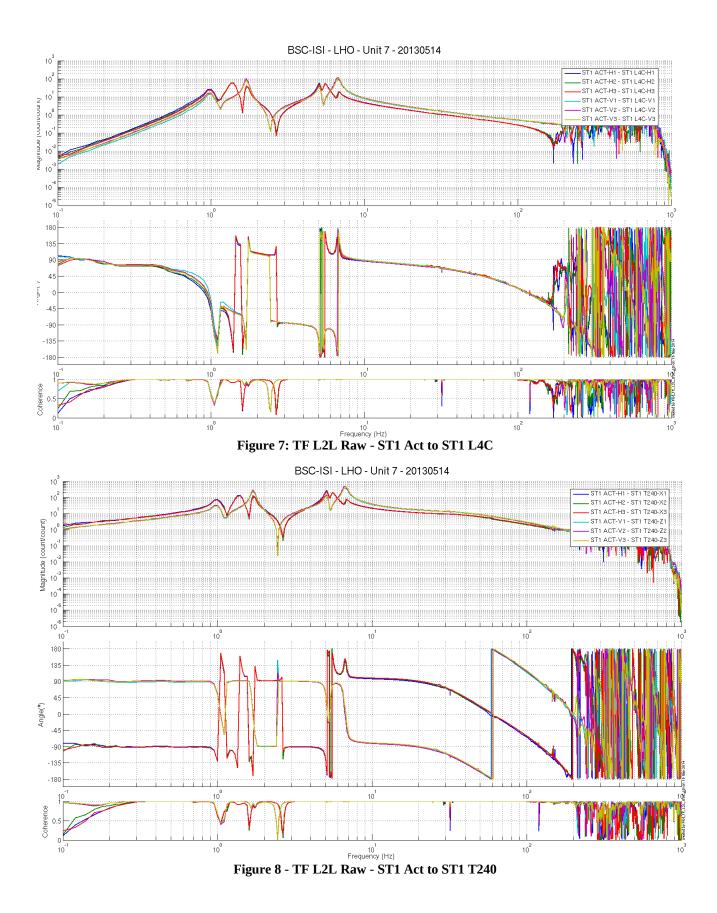
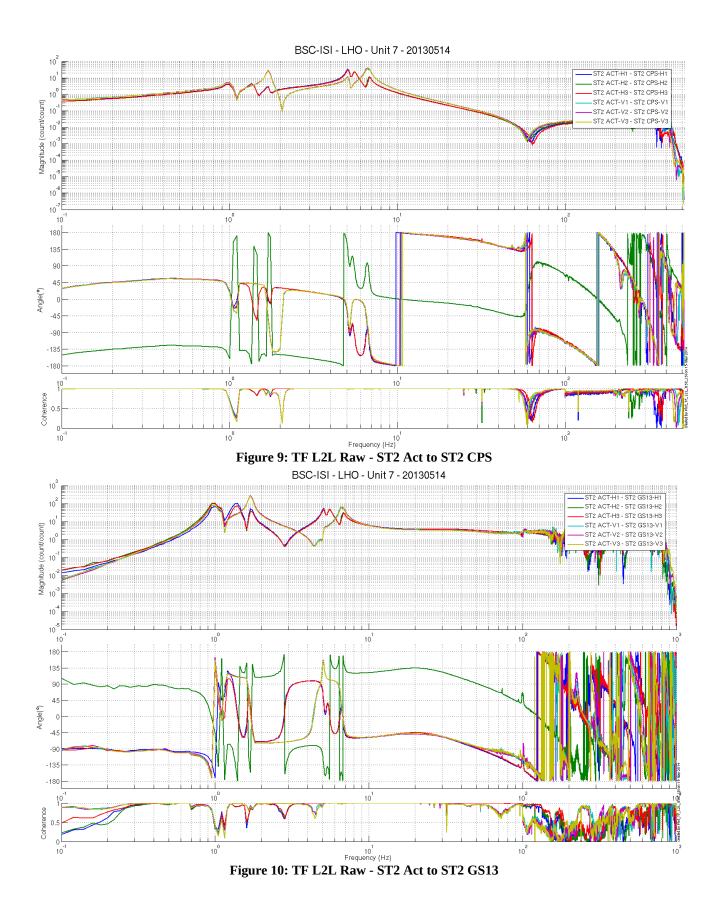




Figure 6: TF L2L Raw - ST1 Act to ST1 CPS

Passed: <u>X</u> Failed: <u>Waived</u> :

IV. BSC-ISI testing Summary

Test result:

This is the third "aLigo BSC-ISI" tested at LHO. The testing procedure document E1000483-v5 was used. Tests were done during in March 2013.

The LHO ISI-BSC Unit 5 is validated per the tests presented in this report. All results are posted on the SVN at:

https://svn.ligo.caltech.edu/svn/seismic/BSC-ISI/X1/Unit_7/Data

FAILED AND WAIVED TESTS

- 1- List of tests that failed/waived and won't be redone
 - **Step III.9 Spring constant** The blades are slightly softer than the design. However, the blade softness's are in good agreements with what was measured on the other units.
- 2- List of tests that failed/waived, that need to be re-done during phase 2
- 3- List of tests skipped that won't be performed because not feasible during phase II (i.e. stage 0 leveling)
 - **Step II.5** Check level of Stage 0 after top-bottom plate assembly
 - **Step II.8** Blade 0-1 Post Launch Angle No need for this test, the budget mass looks good and we already reposition the Blades after noticing a gap between the Blade and its Spacer on Stage 0-1 (see comment on Step 9 Vertical Spring Constant).
 - **Step III.3 Measure the Sensor gap** This test was not performed. The sensor gaps have not been measured. These sensors have already been checked at LASTI. Moreover, risks of scratching the target are so high that we preferred not performing this test. In the future, this test will be removed from the testing procedure.
 - **Step III.8 Vertical sensor calibration** The test is not realized in a proper way to evaluate accurately the calibration of the vertical CPS.
- 4- Lists of tests skipped that needs to be done during phase II.
 - Step III.14 Symmetrization Calibration
 - Step III.17 Lower Zero Moment Plan
 - Step III.18.1 Damping Loops Stage 2
 - Step III.18.2 Damping Loops Stage 1
 - Step III.20 Isolation loops