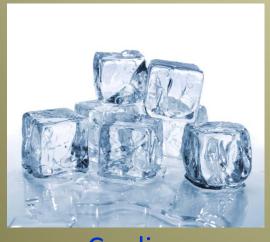
Optical Coatings and Thermal Noise in Precision Measurements

Embry-Riddle Aeronautical
University Physics Colloquium
October 25, 2011

Gregory Harry

American University

LIGO-G1101150



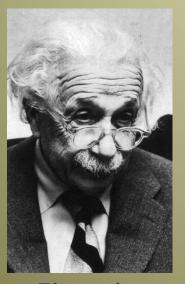
Thermal Noise

- Random motion when not at 0 Kelvin
 - Can also appear as random voltage, force, pressure, optical properties, etc.
- Energy in thermal noise increases with temperature
 - Cooling is a way, but not the only way, to reduce these thermal fluctuations

Thermal Energy

Cooling

- These random motions set a lower limit on measuring signals
 - This is the "noise" part of thermal noise
- Not random fluctuations in temperature
 - Although these can play a role in thermal noise (thermo-optic, thermoelastic, etc.)


Brief History of Thermal Noise: I

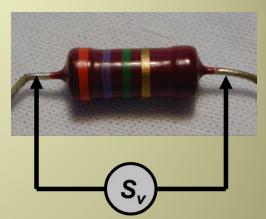
Robert Brown: Botanist (1827)

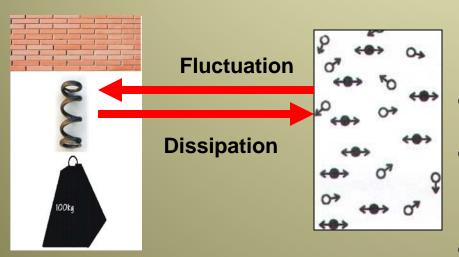
- Microscope pioneer
- Observed pollen moving in water
- Saw dust from Sphinx moving as well

Brownian Motion

Einstein

Albert Einstein: Physicist (1905)

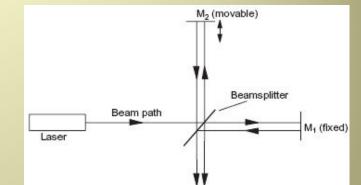

- Mathematics of Brownian motion
- Linked motion to fluid viscosity
- Most cited of Einstein's papers


Brief History of Thermal Noise: II

Johnson Noise

Johnson and Nyquist (1926)

- Voltage noise around resistors
- Seemingly separate to Browns motion


Fluctuation-Dissipation Theorem

Callen, Welton, and Greene (1950s)

- Tie everything together
- Relates random motion to energy loss
- Fluctuation-Dissipation
 Theorem

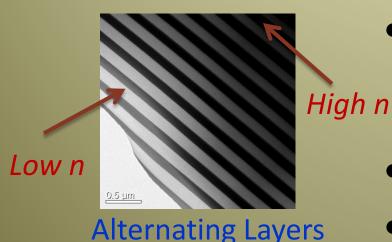
Interferometry


- High precision measurement
- Wavelength of light yardstick
 - Visible light 500 nm (5 X 10⁻⁷ m)
 - Can use even shorter waves
- Uses interference

Eyepiece

Interferometer

- Measures position of reflection
 - Want mirror center of mass
- Thermal noise in coatings on mirror limits sensitivity
 - Other limits may exist as well


Interference of Light

Optical Coatings

- Often made of alternating layers of different materials
- Layer reflections interfere to cause coating reflection
 - Optimize layer thicknesses
 - Depends on indices of refraction
 - Can design for transmission

Coating Reflectivity

- Higher reflection
 - Increased number of layers
 - Bigger index (n) separation
- Scatter causes loss of light
- Absorption causes heating

Coating Thermal Noise I

Levin's Formula

- From Fluctuation-Dissipation Theorem
- Describes random motions of surface of coating relative to mirror center of mass

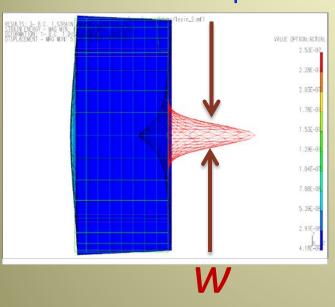
$$S_{x}(f) = \frac{4 KB T d}{f Y w^{2} \pi^{2}} \phi$$

K_B: Boltzmann's constant

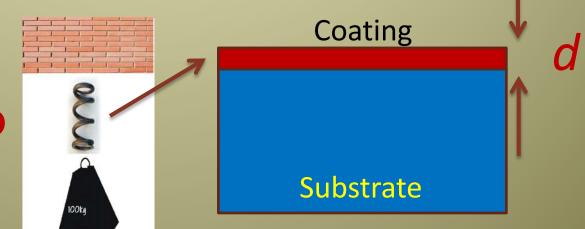
T: temperature in Kelvin

f: frequency

d: coating thickness


Y: Young's modulus

w: beam width


 ϕ : mechanical loss

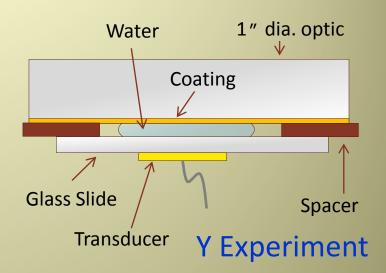
Coating Thermal Noise II

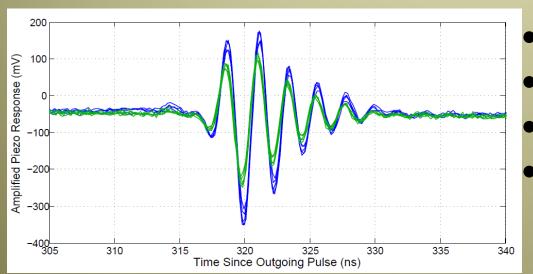
Side View of Optic

- w: how well noise is averaged
- d: how much coating
- Y: how stiff is the coating
- φ: how much heat energy can affect coating motion

Mechanical Loss of Coating Materials

High Index Materials

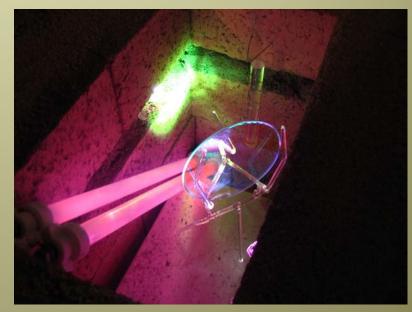

- Tantala Ta_2O_5 3 10^{-4}
- Titania-Tantala 1.5 10⁻⁴
- Niobia Nb_2O_5 5 10^{-4}


Low Index Materials

- Silica SiO₂ 1 10⁻⁵
- Alumina Al₂O₅ 2 10⁻⁵
- High index materials have higher mechanical loss
 - Always? Generally? Still under study
 - Focus on finding new and better high index materials
- Many materials show different mechanical loss from different coating companies
 - Process is known to have some affect
 - Most coating companies keep process secret

Young's Modulus Measurement

- Thermal noise is a force noise
- Stiffness converts force to position
- Young's modulus of both coating and substrate important



- Work at ERAU on Y
- Green trace from silica
- Blue trace from sapphire
- Also studying high index coating materials

Pulse from Young's Modulus Measurement

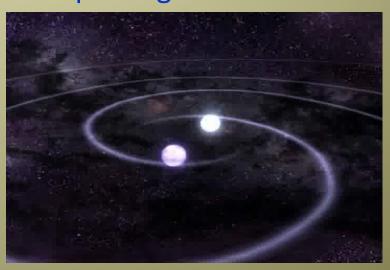
Thermo-optic Noise

- Different form of coating thermal noise
- Thermal fluctuations cause change in index of refraction and layer thickness
- Does not depend on ϕ , but on dn/dT and dL/dT
- Generally less than Brownian thermal noise
 - ERAU center of thermooptic noise research
 - Measuring dn/dT from changing reflectivity with temperature
 - Difficult data analysis from multiple layers

Experimental Setup at ERAU

Applications Limited by Coating Thermal Noise

- Gravitational Wave Detection
 - First concerned with coating thermal noise
 - Not limiting right now, probably about 3 years
 - Focus of ERAU (and American University) efforts
- Frequency stabilization
 - Precise timing measurements
 - Frequency combs
- Quantum optomechanics
 - Quantum behavior of macroscopic objects
- Cavity quantum electrodynamics
 - Single atom and photon interactions


Gravitational Wave Detection

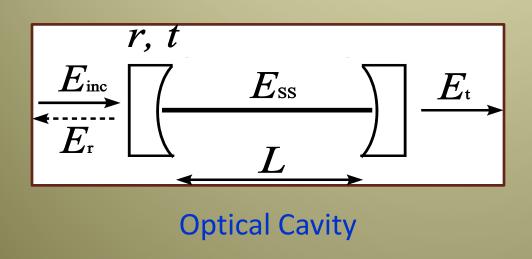
- Measure prediction of Einstein's theory of gravity
 - Moving masses produce waves in space and time
- Astronomical sized objects needed
 - Still very tiny effect, about 10⁻¹⁸ m at Earth
- Interferometer measures separation between two coated optics; need to boost signal
 - High laser power: hundreds of kilowatts
 - Long arms: 4 kilometers

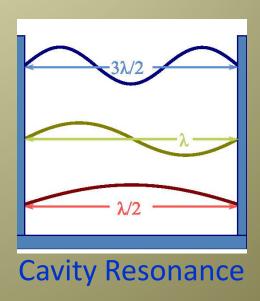
LIGO Gravitational Wave Detectors

Gravitational Wave Optics

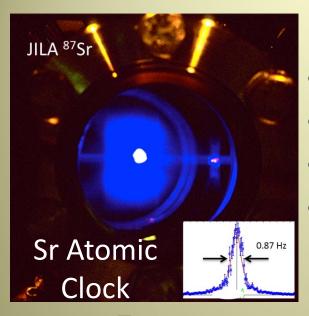
- 40 kilograms with 6 cm spot size
 - Increased w reduces coating thermal noise
- High optical power
 - Low scatter to keep light in arms
 - Low absorption to reduce temperature
 - Low optical loss allows for squeezed light

Large LIGO Optic


Coated LIGO Optic

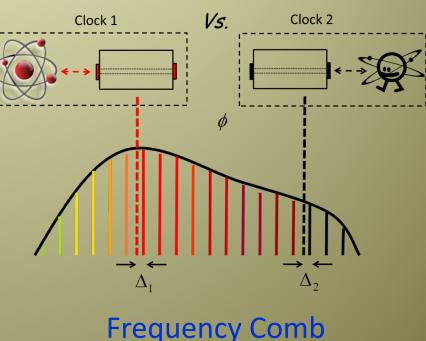

Titania-Tantala/Silica Coatings

- Design to preserve reflectivity but reduce amount of titania-tantala
- Large index contrast, to keep coating thickness *d* low
- Reduced absorption, low scatter


Frequency Stabilization

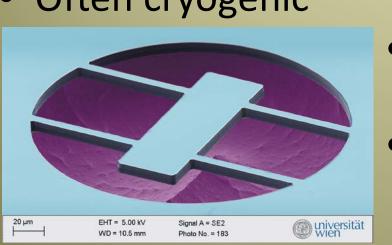
- Optical cavities used as frequency reference
 - Cavities have coated mirrors on each end
- Light of certain frequency will resonate in cavity
- Length stability determines frequency stability
- Coating thermal noise will limit cavity length
 - Currently limited to proton radius over 1 second

Frequency Stabilization Applications



Atomic clocks

- Metrology of optical surfaces
- Improved spectroscopy
- Global positioning (GPS) technology
- Gravitational redshift measurement over 1 meter

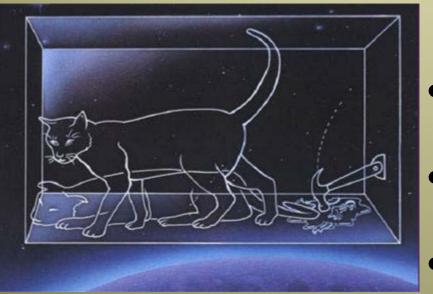

Frequency combs Link across frequencies

- Connects atomic clocks based on different species
- Optical frequency comparison to microwave standards
- Study changes in fundamental constants

Cavity Optomechanics

- Measure motion of small, but macroscopic objects
 - Nano to milli grams
- Some samples made by etching
 - Only coatings, no substrates
 - Coating properties crucial
- Often cryogenic

Micron Scale Oscillator

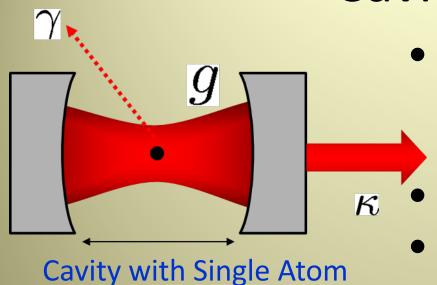


Mini-mirror in Suspension

- Light acts as spring
 - Radiation pressure
 - Exchange energy between mirrors and light
 - Doppler shift

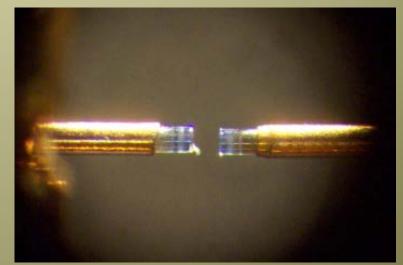
Cavity Optomechanics Experiments

- Single electron spin detection
- Quantum information theory (Qubits)
- Quantum limits of force, mass, and position
- Quantum mechanical behavior of large objects
 - Coupling of large resonator to single atom
 - Schrödinger's cat experiments

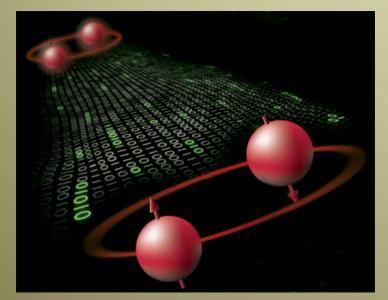


Schrödinger's Cat

- Radioactive decay breaks poison bottle or not
- Macroscopic state depends of quantum event
- Just thought experiment until recently


Schrödinger's Cat Experiment

Cavity QED


- Single atom (ion) in cavity
 - Also quantum dot
 - Bose Einstein condensate
- Secondary beam traps atom
 - Thermal noise can influence trapping
- Coating scatter very low
 - Chance of interaction with atom >> chance of scatter
- Can use optical fibers to define cavity
- Generate single photons

Fiber Optic Cavity

Cavity QED Applications

- Study fundamental quantum systems
 - Interaction of light and matter
- Single atom lasers

Quantum Computer

Single Atom Loaded Into Cavity

- Measure entanglement between different atoms
 - Secure quantum cryptography
- Quantum computation
- Quantum networks

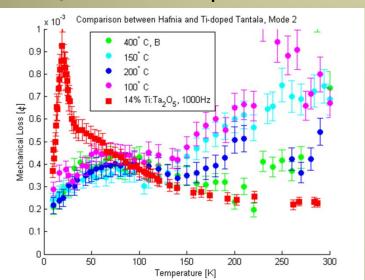
Reducing Coating Thermal Noise

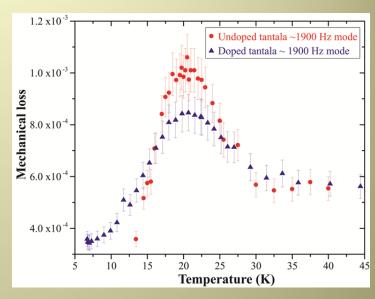
- Reducing temperature
 - Directly lowers T in thermal noise equation
 - Material properties (ϕ , Y, etc.) can also change
- Beam shaping
 - Effectively increase beam size
 - Can cause difficulty with interferometry
- Coating free mirrors
 - Eliminate need for coatings
 - Hard to get high reflectivity
- Khalili cavities
 - Get lower thickness coatings
 - Need extra mirrors

Cryogenics

- Reduction in T directly lowers thermal noise
- Need to study materials at low temperatures
 - Properties can improve, worsen, or stay same
 - New materials may become possible

Engineering challenges

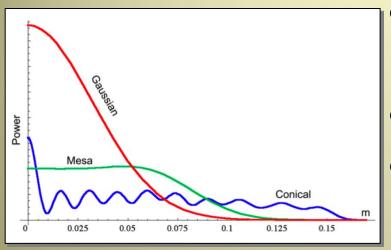

- High thermal conductivity materials to get heat out
- High light power can add heat to optics
- Refrigerators can cause vibration and other noise


Cooled Mirror

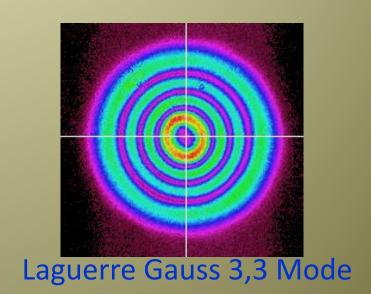
Cryogenics and Materials

- Material φ's change with T
- Often have loss peaks
 - Tantala, titania-tantala, silica
 - Help understand source of mechanical loss
- Very low T, ϕ 's become low

Loss Peaks in Ta and Ti-Ta

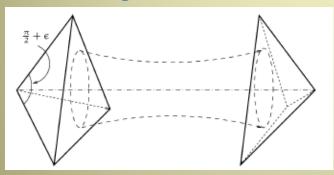


- Many loss peaks different with annealing/doping
- Hafnia (HfO₂) poor at room temperature but continually improves with low T

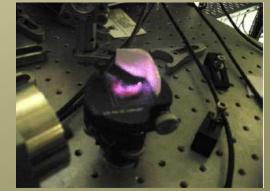

Hafnia Mechanical Loss

Beam Shaping

Different Shaped Beams



- Averaging across mirror gives lower thermal noise
- Effectively increasing w value
- Brings up optical problems
 - Optical loss at edge of mirror
 - Cavity stability at high power
- Many experimental attempts
- Mesa beams
 - Requires special shaped mirror
- Laguerre Gauss beams
 - Use spherical mirrors
 - Plans for use in prototype


Coating Free Mirrors

Coating Free Mirrors

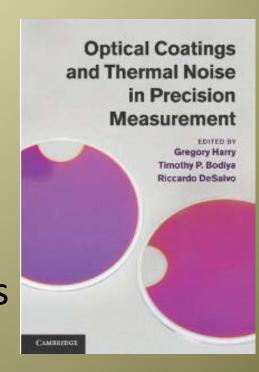
- Mostly theory and modeling work
- Concerns with level of reflectivity achievable
- Experiment using Brewster angle mirror

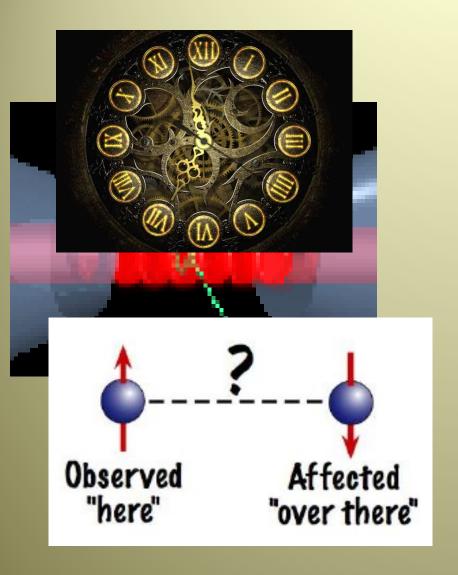
- Can use total internal reflection effect for mirror
- Need an anti-reflective coating on face
 - Much thinner than reflective
- Beam travels inside mirror
 - Scatter, absorption concerns

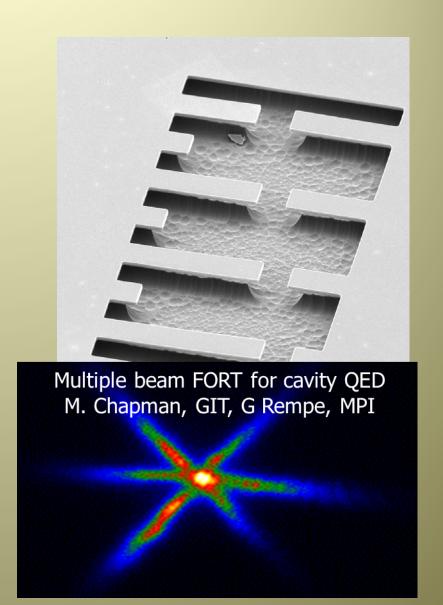
Brewster's Angle Reflector

Khalili Cavities

- Make one mirror of cavity itself a cavity
- Thick coating (EETM) sensed by less light
- Thin coating (IETM) sensed by more light

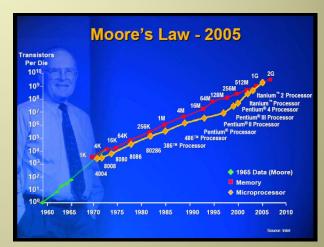

ITM IETM EETM $l \lesssim 10 \, \mathrm{m}$


Khalili Cavity


- Planned for use in prototype interferometer
- Added complexity due to additional mirror
- Hope to study quantum noise and squeezed light

Summary and Conclusion

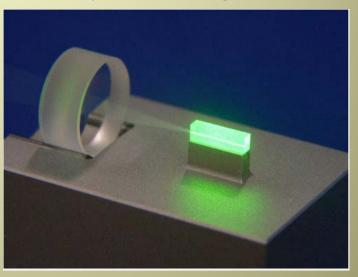
- Coating properties limitation on many precision optical measurements
- Coating thermal noise limiting noise source
- Cutting edge physics and astronomy
 - Gravitational waves, atomic clocks,
 Schrödinger's cat, quantum computing
- Many ways to improve thermal noise
 - Cryogenics one option
 - Much research needed
- Book from Cambridge University Press January 2012



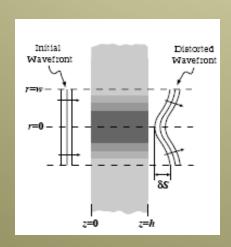
Processes Limited by Thermal Noise

- Electronics Johnson Noise
 - Possible end to Moore's Law
 - Can be used as source of signal

Moore's Law


Hearing

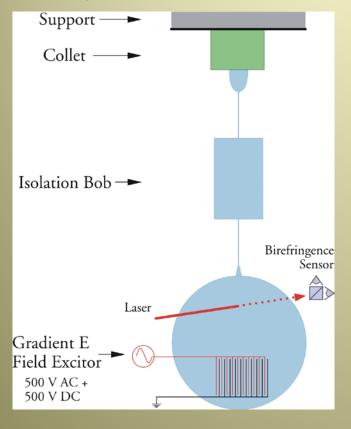
- Human hearing pressure noise
- Atomic force microscopes
- Precision measurement with interferometry


Coatings in Precision Measurement

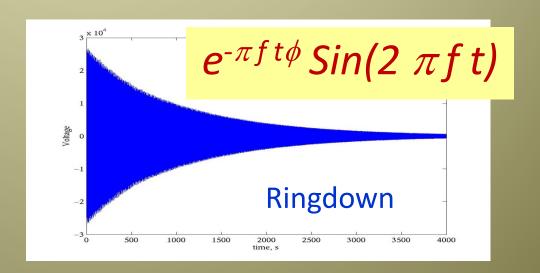
- More light for more signal
 - Higher reflectivity
 - Low scatter
- Quantum squeezing
 - Lowers quantum noise
 - Limited by coating optical loss

Squeezed Light

Thermal
Deformation
of Light in
Heated Optic

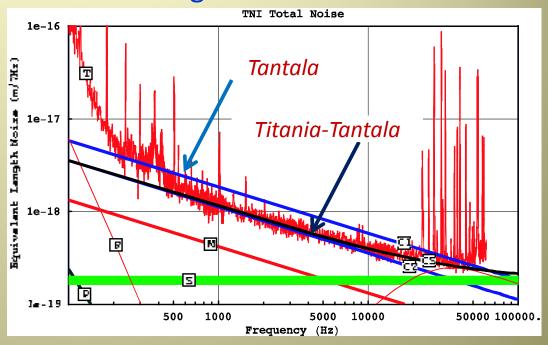


Heating issues


- Absorption turns light to heat
- Heat can deform mirrors
- Extreme heat causes damage
- Thermal noise

Measurements of Coating ϕ

Q Measurement


- Mechanical loss ϕ also causes ringdown of normal modes
 - Test samples rings like a bell
 - Energy slowly leaves ringing
- Can measure φ more easily than measuring thermal noise

Direct Thermal Noise Measurements

- Interferometer can directly measure coating thermal noise
- Very difficult
 - Years to perfect
 - Months to measure
- See 1/f dependence

Coating Thermal Noise Data

- Clear improvement from tantala to titania-tantala
 - Reasonable agreement with Q measurements
- Seen improvement from using less tantala
- Can (and have) also study substrate thermal noise