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1 ABSTRACT 

Active damping is often used in high precision vibration isolation. In systems where extreme 

levels of isolation are required, the sensors used in active damping can inject noise that can 

significantly degrade the performance of the system. In this paper, an independent modal control 

combined with a state estimator is designed to minimize the effect of sensor noise re-injection 

while maintaining effective damping control. Tools are developed to balance damping and sensor 

noise injection minimization. This method is applied to the last stage of an Advanced LIGO 

seismic isolation system which is a multi-stage pendulum system. A comparison between a 

classic filtering approach and the modal control and estimation method is shown. These results 

are experimentally validated using optical techniques to measure the distance between two 

isolated tests masses. Displacement noise of order less than an angstrom can easily be 

measured using this technique. 
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2 INTRODUCTION 

The detection of gravitational waves is one of the biggest challenges for modern physics and 

mechanical engineering. Gravitational waves are generated by the acceleration of massive 

objects in space and were predicted by Einstein  [1] in 1916. The detection of such waves is 

important for several reasons. First it will allow some of the predictions of General Relativity to be 

tested. Secondly, it will provide new information on astrophysical events in the universe, for 

example the collapse of stars or interactions of black holes. The current detectors  [2] [3] [4] [5] 

attempt to detect these waves using optical interferometry to measure the strain they produce as 

they pass through the earth. The strain of this signal when it reaches the earth is extremely small, 

and to attain such an extraordinary sensitivity, it is necessary to design a system to isolate the 

instruments from the ground’s vibrations. 

 

Vibrations isolation is a very common problem in the engineering field and various approaches 

can be used. Traditionally, passive control systems  [6] that don’t require an external power 
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source are used to attenuate or cancel mechanical vibrations. Two different kind of passive 

systems can be found: Passive dampers  [7] are used to dissipate the energy of the system 

through localized devices such as rubber, oil or friction systems. Passive isolators  [8] [9] are used 

to isolate a system from an input noise. In these systems, a flexible isolation system is introduced 

between the input noise and the structure. By tuning this flexibility, the transmitted vibrations can 

be reduced or eliminated. These isolators are very often limited to high frequencies. 

In the last few decades, advances in digital signal processing, sensors and actuators technology 

have prompted interest in active vibration control  [10] [11]. These systems can be defined as 

systems which require external power for operation: sensors measure the motion of the structure, 

the measurements are then processed and actuators apply a response to counter-act the 

displacement. Depending on the location of the actuators and the software that pilots them; active 

control can either be used for damping purposes  [12] or vibration isolation  [13] [14]. The 

advantages of active control are the flexibility and the ability to perform at lower frequencies. 

However, active control is expensive and as will be shown in this article, sensors and actuators 

can generate additional noise in the system. 

Very often, a hybrid passive/active system  [15] [16] can be used. It provides the advantages of the 

passive isolation with the flexibility of the active vibration isolation. Many example of hybrid 

vibrations isolation can be found in transportation systems  [17] or building seismic protection  [18]. 

It is also used for the gravitational waves detectors to isolate the instruments from the ground 

motion. 

 

The proposed Advanced American Gravitational Waves detector, named Advanced LIGO  [19], 

will use three stages of seismic isolation systems  [20] [21]. The last stage is a pendulum that 

utilizes passive isolation to reduce the high frequencies noise. The last mass of this pendulum is 

the test mass whose position is sensed by the interferometer. At 10 Hz, it is anticipated that the 

combination of the three stages will reduce the displacement noise of the test mass of the 

pendulum to about Hzm /10 19− . 

 

In order for the interferometer to function correctly, the pendulum rigid-body resonances that have 

frequencies between 0 and 10Hz are damped using digital active control loops. However, at the 

required sensitivity, the effect of sensor noise is not negligible. In advanced LIGO, the sensor 

noise  [22] is expected to be up to a 100 times higher than the seismic noise at the point where 

the pendulum attaches to the seismic isolation system. This sensor noise will be processed in the 

control loop and re-injected into the pendulum, adding undesired displacement noise at 
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frequencies above the resonances. Therefore, it is necessary to design a control loop that 

provides damping while minimizing the sensor noise re-injection. 

 

Most active control systems in LIGO are designed using the measured frequency-response. It 

has the advantage of being wideband and doesn’t require a model of the structure if accurate 

measurements can be achieved. The current damping loops for LIGO are using collocated 

feedback with IIR filters [23] [24]. We will show that this method introduces extra sensor noise at 

high frequencies into the loop.  

Several alternate methods have been studied to minimize this sensor noise re-injection. The first 

approach consisted of improving the sensors, S. Aston and C. Speake have worked to increase 

the sensitivity in the sensors by using interferometric techniques  [25] This sensor has a lower 

noise floor, it is expensive and complex.  

A less costly solution was studied by K. Strain  [26]. He proposed using a combination of active 

and passive damping. In his method, the lowest modes are still controlled actively but the highest 

modes are damped using the eddy current effect. This solution reduces the sensor noise 

transmission but increases the coupling between the pendulum and its frame, which can lead to 

more noise at high frequencies. 

More recently, an interesting technique has been developed by G. Losurdo and D. Passuello  [27] 

for VIRGO. Their purely active loop is split into two loops using complementary filters; one is 

actuating on the real pendulum at low frequencies while the other one is acting on a virtual model 

of the pendulum at the high frequencies. The combination of both loops is identical to a classic 

feedback but in this case, the virtual model “absorbs” the re-injection of the high frequencies 

sensor noise. This idea is very promising but mismatches in the model remain to be studied and 

the filtering of the sensor noise is also limited. A reliable, non expensive solution remains to be 

found to minimize the sensor noise re-injection while providing the desired damping performance. 

 

In this work, the sensor noise injection will be minimized by using advanced active control loop 

topologies. The new approach will take advantage of the knowledge of the Advanced LIGO 

pendulum’s dynamics and won’t require any additional hardware or cost. Independent Modal 

Control  [28] [29] will be used to damp each mode of the pendulum separately. One of the 

advantage of the IMC is that it gives more freedom to the designer. By controlling modes one by 

one, it is possible to identify which modes transmit more sensor noise. This modal control will be 

coupled with an observer  [30] that can be used to reconstruct the states that we cannot measure. 

Commonly, observers [31] are designed so that their poles are much faster than the controller’s to 

insure stability. In this work, The knowledge of the plant will be used to design a slower estimator 

 [32]  that filters the sensor noise. 
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The loop will then be tested on a working Advanced LIGO suspension to validate the models and 

simulations. The order of magnitude of the vibrations that need to be measured is smaller than a 

nanometer, in order to measure such a small displacement of the test mass, a laser beam 

resonating inside the optical cavity formed by two triple pendulums will be used  [33] [34]. A 

comparison of the model and the experiment is performed to check the validity of the simulations. 

 

3 ADVANCED LIGO & SUSPENSIONS 

3.1 GRAVITATIONAL WAVES 

In spite of the extraordinarily small strain that can be expected on earth, several methods have 

been proposed to detect gravitational radiation. In more recent times, most research effort has 

been directed toward laser interferometric detectors, and at this time, several countries have 

commissioned detectors of this type. 

 

A laser interferometer gravitational wave detector is, in principle, a Michelson interferometer with 

multi-kilometer long Fabry Perot cavities in its arms. The mirrors of the interferometric 

gravitational wave detector are suspended as pendulums. In order to isolate the interferometer 

from the ground motion and align the mirrors relatively to each other, multi-stage isolation 

systems are used. For the next generation of the proposed American detector called Advanced 

LIGO, three cascading sub-systems have been developed  [35] and are shown in Fig 1: 

 

1. A hydraulic pre-isolator system (HEPI) for low frequency alignment and control, which will 

be situated outside the vacuum system.  

2. A two-stage in-vacuum active isolation platform designed to give a factor of ~1000 

attenuation at 10 Hz 

3. A multiple pendulum suspension system (quadruple pendulum for the most sensitive 

optics and triple pendulum otherwise) that provides passive isolation above a few hertz, 

and minimizes suspension thermal noise by using high Q materials in the final stage.  

 

The combination of these three sub-systems will reduce the displacement noise of the test 

mass of the pendulum to about Hzm /10 19− at 10Hz. 
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3.2 ADVANCED LIGO SUSPENSION, THE TRIPLE PENDULUM 

The triple pendulum is the last stage of Advanced LIGO’s seismic isolation. Its role is to filter the 

high (>10Hz) frequencies noise using 3 stages of passive isolation in the horizontal directions and 

2 stages of isolation in the vertical direction. The pendulum is shown in Fig 2 and has been 

modeled and designed by Calum Torrie and Norna Robertson in Glasgow and Caltech  [36]  

 

The main purpose of the triple pendulum is to filter the high frequencies seismic noise and 

minimize the thermal noise. The thermal noise is calculated as a function of the structural 

dissipation thanks to the theorem of fluctuation-dissipation: 
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Where bk is the Boltzmann’s constant, T is the temperature and α is the structural internal 

dissipation. The lower the internal dissipation (the higher the Q factor), the lower the noise far 

from resonance. By building low dissipation suspensions, the noise off resonance will be lowered 

and resonances will be sharper and easier to filter. 
 

Hence, the pendulum is made of low loss materials (fused silica wires), which also increases the 

Q of the low frequency rigid-body resonances. Unfortunately, this leads to a very large 

amplification of the seismic noise at those resonances. 

 

Although these low frequencies aren’t in the detection bandwidth of the LIGO interferometers, the 

resonances still need to be damped to keep the pendulum quiet enough so that the 

interferometers can perform.  

 

An active control is used to damp the pendulum resonances. The first mass of the pendulum has 

six sensors/actuators that are used by the active control loop to damp the pendulum in the six 

degrees of freedom.  

 

Using active control to damp the pendulum resonances also generates additional noise that 

needs to be accounted for. The electro-magnetic actuator noise is considered to be negligible at 

high frequencies; however, the sensor noise is relatively large as shown in the following section. 
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3.3 SEISMIC NOISE AND SENSOR NOISE 

The two seismic isolation stages between the ground and the pendulum filter the seismic noise to 

a very low level. The anticipated seismic noise at the pendulum attachment point for Advanced 

LIGO is plotted in Fig 3. 

 

At this level, the noise floor of the sensors used to actively damp the pendulum is large compared 

to the motion. This noise has already been measured in laboratory. Above 10Hz, the noise comes 

from shot noise. Shot noise is a type of noise that occurs when the finite number of particles that 

carry energy, such as the photons in the case of our optical sensor, is small enough to give rise to 

detectable statistical fluctuations in a measurement. Below 10Hz, the noise goes up and this 

phenomenon has not been understood yet. 

 

As we can see on Fig 3, the sensor noise becomes the dominant noise above 0.8Hz and 

becomes about 500 times larger than the seismic noise coming from the ground at 10Hz. This is 

unusual in the active control field.  

 

In the active damping loop, this sensor noise will be processed and re-injected at high 

frequencies; thus deteriorating the passive isolation of the pendulum. The challenge is to design a 

control loop that damps the resonances but keeps the sensor noise transmission as small as 

possible. 

 

3.4 FEEDBACK USING COLLOCATED IRR FILTER  

In a frequency domain approach, filters are designed to reduce the high frequencies feedback 

gain as much as possible. The gain is then adjusted to provide a 10 seconds settling time to an 

impulse excitation. Designing such a filter is a long and complicated process and provides poor 

performance. The example for the filter in the X direction is given in Fig 4 : the plant, filter and 

open loop are plotted. The impulse response of the closed loop with the active control on and off 

is then plotted in Fig 5. 

 

The amplitude of displacement noise at the bottom mass is plotted in Fig 6 using the seismic and 

sensor noise inputs expected for Advanced LIGO. We see that the damping loop significantly 

increases the noise at high frequencies. Unfortunately, this filter is giving the best results we can 

expect from this method, which means that improving the performance will only be possible by 

changing the damping strategy.  
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In the following section, we will show that we can use more advanced control schemes by using 

our knowledge of the pendulum. In order to get more tuning freedom to optimize the loop, we will 

use independent modal control. The modal decomposition is a great tool to decouple the control 

design and we will see that it also helps to decrease the sensor noise transmission. The modal 

states will be obtained thanks to an observer; the lack of measurements will be compensated by 

our knowledge of the pendulum’s model. The observer can also be used to reduce the sensor 

noise transmission.  

 

4 CONTROL BACKGROUND 

The following section recalls the background of the well-known control and observation 

techniques used in this paper.  

 

4.1 INDEPENDENT MODAL CONTROL 

The controller we use is an Independent Modal Control (IMC), it consists of working in the modal 

basis where the equation of the dynamics are decoupled. Each mode will then be controlled and 

tuned independently. The main advantage of this strategy is that each mode can be studied both 

for damping performances and sensor noise transmission. In general, lower modes will tend to 

have a bigger influence on damping while higher modes are the ones transmitting the more 

sensor noise. 

 

The equation of motion in the real basis (M is the mass matrix, K is the stiffness matrix and x is 

the vector containing the real states) is: 

FKxxM =+&&  Eq  4.1   

tiXex ω=  Eq  4.2 

21 ωXKXM =−
 Eq  4.3  

 

We call φ  the matrix formed by the eigenvectors X .  

qx .φ=  Eq  4.4 

FqKqM ttt φφφφφ =+&&  Eq  4.5 

 

The last equations are decoupled, we chose to control each modal state q independently; the 

feedback force applied to the plant is then a linear combination of the modal forces. The diagram 

of the modal control loop is shown in Fig 7. 
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4.2 MODAL OBSERVER 

Modal control can only be used if the modal state is known. In the case of the triple pendulum, 

this is not trivial because only the position of the first mass is measured, which is not enough to 

know the full modal state. However, it is possible to rebuild the modal state by using an observer. 

It consists of a model of the structure running in parallel with the real plant whose outputs are 

compared to the measurable outputs of the plant. The difference is minimized by using a 

feedback loop. 

 

There are different ways to optimize this feedback. Some method like robust control method H∞ 

or H2 could be used. These methods are easy to adapt to poorly known systems. However, 

robust controls are optimized for the worst-case scenario; they are very efficient when the model 

of the plant is not well known, but the performances they provide are usually poor.  

 

In the LIGO case, the robustness is not necessary but high performance needs to be achieved. 

The model of the suspension is very well known and this information can be used with optimal 

control methods. We will use MIMO modal estimator optimized using the Linear Quadratic 

method in this paper. The state-space discrete diagram of the modal observer is given in Fig 8. 

The goal is to optimize mL . 

 

The estimated modal state and estimated measurement are: 

( )kkmmkmk yyLuBqAq ˆˆˆ 1 −++=+  Eq  4.6 

kmk qCy ˆˆ =  Eq  4.7 

 

The observation error is the difference between the modal state and the estimated modal state: 

kkk qq ˆ−=δ  Eq  4.8 

 

And the observer is described by the following equation 

k
T

mk
T

mk zCA +=+ δδ 1  Eq  4.9 

With k
T

mk Lz δ−=  Eq  4.10 

 

We perform the optimization using the LQ method with the following cost function: 
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1Q and 2Q  are weighting matrices determined by the designer. The feedback gain matrix Lm is 

then calculated to minimize the cost function. A good description for the resolution of the LQ 

optimization is given in  [31]. 

 

5 OPTIMIZATION 

5.1 DAMPING AND FILTERING DUALITY 

Our goal is to optimize the control loop so that it provides good damping performance while 

keeping the sensor noise transmission as low as possible. Fig 9 shows a simplified diagram of 

the loop:  

 

The real motion of the pendulum’s mass can be written as a function of the 2 uncorrelated input 

noises: the seismic noise and the sensor noise: 

vTFwTFx sensorseismic .. +=    Eq  5.1 

 

The optimization consists of minimizing sensorTF  in high frequencies (above 10Hz), often referred 

as sensor noise transmission while damping the resonances of seismicTF . The damping 

requirements for advanced LIGO suspensions haven’t been set yet; we choose to set our 

requirements to a 10sec settling time from an impulse excitation. The settling time is defined as 

the time it takes for the amplitude of the oscillation to remain lower than 10% of the maximum 

value. 

 

In the following section, we will describe how to optimize both the modal controller and the modal 

estimator. 

 

5.2 INDEPENDENT MODAL CONTROL 

The modal controller’s optimization consists in balancing the contribution of the sensor noise 

transmitted by each independent modal controller. 

To begin with, the feedback gain of each individual modal controller is arbitrarily set up so that 

each mode damps with a settling time of 10 seconds. Then, the sensor noise transmission 
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sensorTF  for each modal controller is plotted. Fig 10 shows an example for a system with 3 

degrees of freedom: 

 

As we see in the high frequencies (above 10Hz), the sensor noise is mostly transmitted by the 

3rd modal controller. The control gain of this mode can be reduced, while the gain of the two 

other controllers can be increased without increasing the total sensor noise transmission as 

shown in Fig 11. Thanks to this tuning, the total sensor noise transmission has been reduced by 

several decibels. Because the lower modes carry the most energy, the result on the overall 

damping performance will also remain the same as shown on Fig 12.  

 

5.3 MODAL OBSERVER 

The next step is to optimize the observer, so that the sensor noise transmission is reduced 

without decreasing the damping performance. This is done by carefully balancing the weighting 

matrices of the cost function (Eq 4.11). 

 

The weighting matrix 1Q  enables us to weigh how rapidly we want to observe each mode. The 

larger these terms, the faster the estimation will be, but the greater the sensor noise transmission. 

We make the choice to design 1Q  so that each mode gets the same weight of 1.  

 

The weighting matrix 2Q  enables us to weigh the participation of each measurement in the 

estimator dynamics. If the weight is large; the sensor noise transmission will be reduced. If the 

gain is small, the measurement contribution will increase and more sensor noise will be 

transmitted. On Fig 13, we show this behavior by plotting the sensor noise transmission (transfer 

function from sensor noise to bottom mass) at 20Hz against 2Q  . 

 

One can also plot the damping performance for different values of 2Q using a given controller; the 

settling time is plotted against 2Q  in Fig 14 

 

We see that the larger 2Q , the longer the settling time. This is due to the fact that a “penalty” to 

the estimator’s internal feedback term has been added in the cost function. When 2Q  increases, 

the estimator becomes slower, this leads to a reduction of the damping performance. By choosing 

the right compromise between damping and sensor noise transmission, we can choose the best 

value of 2Q . 
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If more than one measurement is made, 2Q  is not a single weight anymore and becomes a 

matrix where cross couplings between measurements need to be taken into account. For LIGO 

pendulums, we often have 2 measurements available (displacement and angle of the top mass), 

in these cases, we chose to write 2Q as 

 














=

2

2

12 1
R

R
RQ  Eq  5.2 

 

This formulation shows 2 terms, 1R  weights the overall weight of 2Q  compared to 1Q  . 2R  

weights one measurement relative to the other, which enables us to handle cross-coupling. 

 

As we have done before, the damping performance can be plotted against 1R  for different values 

of 2R  in Fig 15. 

 

Since cross couplings play an important role, they need to be taken into account. Sensor noise 

levels might also be different for the displacement and the angular measurements. Hence, we 

plot the final amplitude of the bottom mass motion due to each of the contributing sensor noises 

instead of the sensor noise transmission. An example is shown in Fig 16. 

 

We see that the trend we have seen with the simple case still exists here, the greater 1R  is, the 

lower the sensor noise transmission. 2R  also plays a very important role here. This minimum is 

due to cross couplings and will be explained in the next section. 

 

5.4 STABILITY-ROBUSTNESS 

In order to study the stability of the loop, the equations of the controlled-observed system are 

written: 

( )kkmkmkk xBKAxqBKAxx δφ −−=−=+ ˆ1  Eq  5.3  

kmkmk LCA δδδ −=+1  Eq  5.4  
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The characteristic equation can be written 

 

( )[ ] ( )[ ] 0det.det =−−−− mmm LCAIBKAI λφλ  Eq  5.6 

 

 

The poles of the controlled-observed system consist of the combination of the estimator poles 

and the controller poles that are unchanged from those obtained assuming actual state feedback. 

Since we have designed both the modal controller and the estimator to be stable, the whole loop 

will also be. However, this principle named separation principle is not systematic. 

 

If the model and the system don’t match because of a parameter mismatch, the poles of the 

system will be different from the poles of the estimator and the controller alone. Such parameter 

mismatches can be simulated in our loop using a Monte-Carlo. 

 

After randomly changing the parameters (wire length, weights, inertias…) in the plant simulation, 

the poles of the modified loop are computed and plotted on a real/imaginary axis. These random 

mismatches can be repeated a large number of tries. By counting the poles in the real positive 

plane, the number of unstable loops that have been generated can be estimated. 

 

Fig 17 shows the example of the Monte-Carlo pole map if the parameter mismatches are 

between -20 and +20%. The unmodified loop poles are shown with white dots and poles from 

randomly changed loops are shown in black. The probability to get an unstable loop is 4.8% (+/- 

2%). 

 

This method allows us to be more confident of the robustness of the control. Large (>10%) 

parameter mismatches are necessary to turn the loop unstable. Fortunately, we don’t expect any 

parameter mismatch to be greater than 5% for the triple pendulum. 

 

6 APPLICATION TO ADVANCED-LIGO TRIPLE PENDULUM 

In this section, we apply our control strategy to the X/Pitch direction of a triple pendulum. The 

plant has six resonance frequencies (see Table 1) that all need to be damped. Both the pitch 

angle and the X displacement of the first mass are measured, couplings between the 2 degrees 

of freedom is taken into account. 
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The sensor noise in pitch ( Hzrad / ) contributes more than the one in the X direction 

( Hzm / ) because of the small lever arm between the sensors used to measure the pitch 

(6cm).  

 

The modal controllers use a very simple filter to damp each mode independently, Each filter has a 

zero at 0Hz to gain phase and for AC coupling, and a complex pair of poles at twice the 

resonance frequency of the mode to filter the higher frequencies while keeping a safe phase 

margin.  

 

The gain for each controller is optimized using the technique we have seen in section  5.2 to get 

the best compromise between damping and sensor noise transmission. The gains are chosen as 

shown in Table 1. 

 

The impulse response for each mode and for the bottom mass is plotted in Fig 18: 

 

The estimator is a MIMO modal estimator optimized using the technique described previously. 

The key to optimizing the estimator is to choose the weights of the cost function (Eq 4.11) to 

minimize the sensor noise transmission while keeping good damping performance. 

 

We plot the displacement noise and angular noise at 20Hz due to the sensor noise as a function 

of 2R  for various values of 1R . 

As we see on Fig 19, the bigger 1R  is, the less the sensor noise transmission to the bottom mass. 

We also see that the plots have a minima; this is the limit where cross coupling becomes more 

important than the direct transmission. To the left of the minima, the noise at the bottom mass is 

dominated by the pitch sensor noise; right of the minima, the noise is dominated by the X sensor 

noise. 

 

We must also adjust the damping performance. The settling time to an impulse is plotted in Fig 20 

for several values of 2R . 

 

The 2R  parameter balances the estimation of both degrees of freedom, if its value is too high or 

too small; one DoF will have very good damping performance while the other won’t. By studying 

the noise plots and the damping plots together, we choose a good compromise to get good 

damping on both degrees of freedom and a good sensor noise filtering: 

1.01 =R  
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310 5.0
2 ≈=R  

 

The damping performance meets the 10 seconds settling time criteria. We now plot the noise at 

the bottom mass and compare it to the classic filtering approach in Fig 21 

 

We see that there is a factor of 100 reduction between the classic loop noise and the modal loop 

noise at 20Hz. The same improvement is obtained in pitch. 

 

 

7 EXPERIMENTAL VALIDATION 

7.1 INTRODUCTION 

This last section explains the experimental validation of our method. Unfortunately, Advanced 

LIGO isolation systems are not yet available, and hence we are not yet able to reach the seismic 

noise level we expected for advanced LIGO yet (see Fig 3). However, we can increase the 

sensor noise by artificially injecting more noise in the sensor inputs. We can then study the 

transfer function between this noise and the displacement of the pendulum’s bottom mass. 

 

Measuring the bottom mass motion is not easy at high frequencies (>10Hz), several problems 

need to be solved. 

 

The first problem is the sensitivity required to measure the signal. The pendulum response to 

sensor noise falls as 1/f6 at the bottom mass. Between 10Hz and 100Hz, the amplitude of the 

signal has fallen by one million. 

 

The second issue is that displacement sensors only measure the relative distance between the 

frame and the masses. As the frequency increases, the filtering increases at the bottom mass 

and the frame’s motion becomes larger than the pendulum motion. In this regime, we aren’t 

measuring the pendulum motion anymore, but the frame itself.  

 

There is no sensor that can measure an inertial displacement at such sensitivity without adding 

undesired weight on the pendulum. Hence a relative displacement measurement between a 

pseudo inertial reference and the test mass under study is performed. The reference is quieter 

than the test mass because the test mass is driven by the elevated sensor noise. The pseudo 

inertial reference is another triple pendulum. The measurement is done by positioning the two 
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triple pendulums face to face and measuring the distance between the bottom mass of the 

pendulums optically. 

 

Measuring the distance between 2 mirrors can be achieved with an excellent sensitivity using 

interferometric techniques. The Fabry-Perot cavity is an attractive way to measure small 

displacements because it can directly measure the distance between 2 parallel mirrors. We use 

the well-established Pound-Drever-Hall  [33] technique to lock the cavity to a stabilized laser and 

measure the length of the cavity with a very high sensitivity. 

 

The measurement involves building up an optical field in a cavity formed between two mirrors 

mounted on triple pendulums as shown in Fig 22. The phase and amplitude of the optical field 

that is reflected off the resonant cavity strongly depends on the separation of the mirrors. As one 

of the mirror moves, the PDH technique detects this phase shift and gives us a very accurate 

measurement of the length between the 2 masses. A feedback force is applied to the second 

pendulum to keep this length constant and keep the cavity at resonance. By knowing the force 

applied on the second triple pendulum, we know how much the first triple pendulum moved. A 

good description of this method is given by Eric Black in  [34].  

 

Our goal is to measure the transmission between the sensor noise and the bottom mass of the 

pendulum. Below 5Hz, the measurement is done with the shadow sensors, the displacement that 

we try to measure is big enough and these sensors are easy to use and reliable. Above 5Hz, the 

optical cavity measurement is used. 

 

7.2 EXPERIMENTAL RESULTS 

We compare 2 different types of damping loop: 

1. The “classic” filtering feedback, as seen in section  3.4 

2. The modal damping and MIMO estimator, as seen in section  6 

The measured and modeled transfer functions are plotted in Fig 23 for both type of damping 

loops. 

 

The high frequencies data agrees very well, between 5Hz and 25Hz, the data are clean and 

match the model almost perfectly. This is a very good result; it verifies our noise model at high 

frequencies, which is the most important part for sensor noise transmission. 

The low frequencies agree well for the classic feedback too. For the modal damping, the data are 

slightly different than the model at some frequencies (minima at 1.1 Hz and noise at 4Hz), this 
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difference is not very significant, and most likely due to some mismatch between the model and 

the real plant, or some cross coupling that is larger than expected. 

 

An interesting observation has also been made using this experiment. The dynamic of the second 

pendulum that is used to keep the cavity locked is heavily modified by the locking feedback. The 

feedback loop on this pendulum acts like an “inertial” clamp that virtually turns the triple pendulum 

into a double pendulum when the cavity gets locked. More measurements and information will be 

given about this phenomenon in an upcoming paper. 

 

8 CONCLUSION 

This paper shows that modern control schemes can be applied to minimize the sensor noise 

injection induced by an active control loop. Well known techniques such as the Independent 

Modal Control and the LQ estimation have been recalled, adapted and optimized toward an 

unusual objective in the field of active control: providing acceptable damping performance while 

minimizing sensor noise transmission in the loop. 

 

The method presented in this work has been applied to solve the control challenges related to 

Advanced LIGO suspensions. Because of the extremely high isolation provided by the previous 

seismic isolation systems, the sensor noise introduced by the pendulum’s sensors is not 

negligible and needs to be accounted for. If standard active control techniques were used, this 

sensor noise would be re-injected into the pendulum and increase the displacement noise.  

 

Instead, an independent modal control has been designed. The gain of each controller has been 

balanced to reduce the sensor noise. The first modes have a large control gain while the highest 

modes which carry most of the sensor noise have a smaller control gain. In order to use the 

modal decomposition and increase the noise filtering, a MIMO modal estimator was developed. 

Tools have been designed to optimize the estimator and the modal control loop so that they can 

provide the required damping while re-injecting a minimum amount of sensor noise. The damping 

performance and the sensor noise filtering have been balanced using these tools. The stability of 

the loop has also been checked in case the numerical model and the plant are not identical. 

 

The method has then been applied a triple suspension. Excellent results have been obtained in 

simulation; the sensor noise transmission has been reduced by a factor of about 100 compared to 

a classic control approach, while keeping the same damping performance. 
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The simulation has been validated by an experiment. A Fabry-Perot optical cavity has been 

formed between 2 identical triple pendulums. Displacements to the order of the angstrom were 

measured using the Pound-Drever-Hall locking and measurement technique. 

 

This control loop method was specifically designed and studied for Advanced LIGO triple 

pendulum but it also concerns any well modeled system where the sensor noise injection due to 

the control loop is an issue. Most of the applications for this technique can be found in very 

sensitive instruments where the performance of the system are so great that the sensor noise 

becomes non-negligible when control loops are designed. It is especially useful in the field of 

gravitational waves detection such as LIGO or VIRGO where the mechanical isolation 

performances of the systems are extremely high.  

 

In the future, this work will be extended to other LIGO suspensions such as the quadruple 

pendulum used for the main interferometer optics. More work can also be done to automatically 

build an adaptive estimator that fits to the plant to improve the performances and robustness of 

the loop in the case of parameter mismatches between the plant and the model. 
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Fig 1: LIGO seismic isolation sub-systems 
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Fig 2: triple pendulum 
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Fig 3: Amplitude of the seismic noise and sensor noise 
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Fig 4: Loop plant and filter for classic control 
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Fig 5: Impulse response with classic control on/off 
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Fig 6 : Displacement noise at the bottom mass with classic control on/off 
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Fig 7: Modal control 
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kŷ

ky  

ku  

 

Fig 8: Prediction discrete estimator 
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Fig 9: Simplified diagram of the loop 
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Fig 10: Sensor noise to bottom mass transmission with each modal controller on, non 
optimized 
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Fig 11: Sensor noise to bottom mass transmission with each modal controller on, 
optimized 
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Fig 12: Modal and physical response to an impulse excitation 
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Fig 13: Sensor noise transmission against Q2 
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Fig 14: Damping performances against Q2 
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Fig 15: Damping performances against R1 for different values of R2 
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Fig 16: Noise due to sensor noise at 20Hz against R2 for different values of R1 
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Fig 17: pole map with model mismatch (+/- 20%) 
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Fig 18: Modal and physical response to an impulse excitation, X and pitch 
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Fig 19: Amplitude of noise due to sensor noise at the bottom mass, X and pitch 
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Fig 20: Settling time for X and pitch against R1 for different values of R2 
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Fig 21: Displacement noise at the bottom mass in the X direction 
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Fig 22: Optical cavity experiment layout 
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Fig 23: Transfer function between sensor noise and Mass 3 in the X direction, using 2 
different control strategies 

 

 

 

Mode Type Frequency (Hz) Feedback gain K 

1 : X mode 0.65 50 

2 : Pitch mode 1.15 2 

3 : X mode 1.5 20 

4 : X mode 2.8 1 

5 : Pitch mode 4.1 8e-3 

6 : Pitch mode 5.7 2e-3 

Table 1: X /pitch resonances and modal controller gains 


