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• Gravitational Waves and History

• Is it impossible to measure 10-20 meters?

• Isn’t  it  too easy to measure 10-20 meters?

OUTLINE



Gravitational Waves

Einstein’s Equations:
When matter moves, or changes its configuration, its gravitational

field changes. This change propagates outward as
a ripple in the curvature of space-time: a gravitational wave.

“Mass tells space-time how to curve,
and space-time tells mass how to move.”

--- John Wheeler

Gμν = (8πG⁄c4)Tμν

NASA/Dana Berry, Sky Works Digital
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q Gravitational Waves = “Ripples in space-time”
q Two transverse polarizations - quadrupolar:     +  and  x 

Gravitational Waves?

Example:

    Ring of test masses

    responding to wave

    propagating along z

Amplitude parameterized by 
! dimensionless strain h:    ΔL   ~   h(t)  x  L
              Need to measure strain of ~ 10-21-10-22

           We want a very large ‘L’



1979:
Gravitational Waves Detected!
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Arecibo Dish

http://nobelprize.org/nobel_prizes/physics/laureates/1993/

PSR1913+16:
‘Hulse-Taylor
Binary Pulsar’

http://nobelprize.org/nobel_prizes/physics/laureates/1993/
http://nobelprize.org/nobel_prizes/physics/laureates/1993/
http://nobelprize.org/nobel_prizes/physics/laureates/1993/
http://nobelprize.org/nobel_prizes/physics/laureates/1993/
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Matt Duez, Francois Foucart, Cornell/WSU

Nuclear Density



GW Detectors
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• Bar detectors
• Like a large bell, set ringing by 

Gravitational Waves
• Michelson interferometers

• First table-top prototypes: 
Malibu, Munich, Caltech, MIT 

• Now: km scale, in-vacuum, 
several 100M$

• Groups in U.S., Europe, 
Japan, Australia, India

Piezo-Electric
Strain Sensors

Joe Weber
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LIGO: Big Michelson Interferometers

Livingston, LA (L1 4km)
~1 hour north of New Orleans

Hanford Nuclear Reservation, 
Eastern WA (H1 4km, H2 2km) - Interferometers are aligned to be as 

close to parallel to each other as 
possible

- Observing signals in coincidence 
increases the detection confidence 
- Determine source location on the sky, 
propagation speed and polarization of 
the gravity wave



Caltech 40m

9

Timeline of GW Detectors
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(Weber)
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(Japan, U.S., Germany, Italy)

1st Tabletop
Interferometer

(Forward, Malibu)
km scale

Interferometers
@ design sensitivity

           ???    
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mid station
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entrance

water tank fish pond

10 W laser

“borrow” 
ditch

Louisiana



http://www.srl.caltech.edu/lisa/graphics/LISA_science.html

http://www.srl.caltech.edu/lisa/graphics/LISA_science.html Beyond Einstein Roadmap

ESA
202N

http://www.srl.caltech.edu/lisa/graphics/LISA_science.html
http://www.srl.caltech.edu/lisa/graphics/LISA_science.html
http://www.srl.caltech.edu/lisa/graphics/LISA_science.html
http://www.srl.caltech.edu/lisa/graphics/LISA_science.html


The Michelson Interferometer

Anti-Symmetric 
(Dark) Port

L
y 

L
xReflected Port
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BS 
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dP/dϕ  ∝  P
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y
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x
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dϕ/dh ∝ L

Laser

Phase Shift ∝ Length

Signal ∝ BS Power

BS

dP  ∝  sqrt(P)
Shot Noise

Poisson Statistics...



LASER

test mass (mirror)

beamsplitter

Residual gas scattering

Wavelength
& amplitude
fluctuations photodiode

Seismic Noise

Thermal
(Brownian)

Noise

Quantum Noise

"Shot" noise

Radiation
pressure

Noise Cartoon



Non-Fundamental Noise
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Science Requirements Doc:
The LIGO-I Sensitivity Goal

Seismic:
Natural and anthropogenic
ground motions, filtered by
active/passive isolation 
systems.
Depends strongly on in-vac 
seismic isolation. 

Thermal:
Brownian noise in the mirrors 
and in the mirrors’ steel 
suspension wires.
Depends mostly on internal 
rubbing in the suspension 
wires.

Shot Noise:
Photon counting statistics --
   > 10 kW in the cavities
   ~ 200 mW detected power

- Goes down with increased 
laser power and better 
fringe contrast
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2006

LIGO Louisiana Noise Progression



The Enhanced LIGO Upgrade



Caltech 40m
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Timeline of GW Detectors
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Advanced LIGO
x10 better amplitude sensitivity

⇒ x1000 rate=(reach)3

⇒ 1 day of Advanced LIGO
               » 1 year of Initial LIGO
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10 Hz 100 Hz 1 kHz

10-22

10-23

10-24

10-21

Anatomy of the interferometer 
performance

q Newtonian gravity noise
 (aka Gravity Gradients)

q Filtered Seismic

q Silica Suspension 
Thermal Noise

q Mirror Coating Thermal

q Quantum Noise
Radiation Pressure
Shot Noise

Initial LIGO

Advanced LIGO
NS/NS Tuning
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Seismic Noise
stack of 
mass-springs

actively controlled space frame
w/ low noise inertial sensors
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steel music 
wire 0.012”

Fused Silica(SiO2)

Mass ~ 10 kg

Dia ~ 25 cm

Thickness ~10 cm

Roughness ~ 1 nm
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Quadruple Suspensions

 107 attenuation  @ 10 Hz

 Seismic platform and 
suspension together:
» 10-19 m/rtHz at 10 Hz

q Fused silica fiber



300 mm!

0.35 nm rms, after subtracting tilt, 

astigmatism and power!

Bigger Mirrors
 Size: 34 cm wide, 20 cm thick => 40 kg
 Material: Heraeus Suprasil Silica
 Bulk Absorption: 0.2 ppm/cm
 Coating absorption: 0.5 ppm/bounce

 High Q (108) -> low thermal noise
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• Gravitational Waves and History

• How to measure 10-20 m?

• How do we move into the future?

OUTLINE
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10 Hz 100 Hz 1 kHz

10-22

10-23

10-24

10-21

Trick #1: Chopping

q Newtonian gravity noise
 (aka Gravity Gradients)

q Filtered Seismic

q Silica Suspension 
Thermal Noise

q Mirror Coating Thermal

q Quantum Noise
Radiation Pressure
Shot Noise

Initial LIGO

Advanced LIGO
NS-NS Tuning

Measure @ Audio Frequencies
LIGO has ~no sensitivity at DC



Brownian Thermal Fluctuations
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Fluctuation
Dissipation
Theorem

Simple 
Harmonic
Oscillator

Mirror Surface
Thermal Fluctuations

Q = 104

Q = 108  !! 

Amorphous
Dielectric
Coatings



Brownian Thermal Fluctuations
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Bigger Beams

Q = 106

Q = 108  !! 

Bigger Mirrors

Better Coatings:
Epitaxial Crystals
Atomic Layer Dep
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10 Hz 100 Hz 1 kHz

10-22

10-23

10-24

10-21

Anatomy of the interferometer 
performance

q Newtonian gravity noise
 (aka Gravity Gradients)

q Filtered Seismic

q Silica Suspension 
Thermal Noise

q Mirror Coating Thermal

q Quantum Noise
Radiation Pressure
Shot Noise

Initial LIGO

Advanced LIGO
NS/NS Tuning
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Differential
Fabry-Perot
Michelson

LIGO-I

 LIGO-II  

fcav~100 Hz fcav~50 Hz

fcm~2 Hz fcm~2 Hz

Resonant
Sideband
Extraction

Cavity
fcc~500 Hz

higher Q
arm cavities

~> less power,
less thermal

distortion in RC 

Vacuum Photons
Enter Here



10 Hz 100 Hz 1 kHz

10-22

10-23

10-24

10-21

What about this Quantum noise?
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Shot Noise Picture:  
Poisson statistics govern 
arrival time of photons at 
the photodetector. Also 
arrival times at the test 
mass (radiation pressure).

Vacuum Photon Picture: 
Losses couple the fluctuating 
vacuum field to the 
interferometer. Noise is a beat 
between the amplitude of the 
vacuum field and the local 
field (field at the AS port or 
field at the test mass).

Photodetector



Circumventing Usual Quantum Noise
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Carrier Field

Squeezed Vacuum Field
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GEO600
Hannover

3.5 dB of noise reduction
~2x in laser power

Beyond Quantum Hopes
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3rd Generation LIGO
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• 2nd Generation Interferometers ~ 2014

• 3rd Generation Interferometers < 2020

• Tests of NS physics, GR, discoveries of 
new phenomena

• Macroscopic Quantum Mechanics

Summary



Concrete Slab

Ground

x(f) = G ΔM(f) /(f2 r2)

ΔM

Noise Sources
Surface Waves
Air Pressure Fluctuations
Subsurface density 

Gravity Gradient Noise



FEA of Ground

G. Cella
Virgo/INFN

Noise Cancellation
Accelerometers measure ground 
motion
Adaptive algorithm estimates GG 
noise


