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Abstract

The Laser Interferometer Gravitational Wave Observatory (LIGO) will

search for direct evidence of gravitational waves emitted by astrophysi-

cal sources in accord with Einstein's General Theory of Relativity. State

of the art laser interferometers located in Hanford, Washington and Liv-

ingston Parish, Louisiana will unambiguously measure the in�nitesimal

displacements of isolated test masses which convey the signature of these

gravitational waves. The initial implementation of LIGO will consist of

three interferometers operating in coincidence to remove spurious terres-

trial sources of noise. Construction of the facilities has begun at both sites,

while research continues to design and develop the technologies to be uti-

lized in achieving the target sensitivity curve having a minimum sensitivity

of � 1�10�19meters=
p
Hz at � 150 Hz for the initial phase of LIGO. Ad-

vanced LIGO interferometers of the future, having strain sensitivities on

the order of 10�24=
p
Hz corresponding to optical phase sensitivities on the

order of 10�11radians=
p
Hz over an observing band from 10Hz to 10kHz,

require a complete understanding of the noise sources limiting detection.

These fundamental noise sources will be quantitatively highlighted along

with the principles of operation of the initial LIGO detector system and

the characteristics of the most promising sources.

�To appear in the proceedings of the Banach Center mini-semester Mathematical Aspects

of Theories of Gravitation, Warsaw, Poland, 1996.
yLIGO Project Document Control Center Number: LIGO-P960031-B-E, October 23, 1996.
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Figure 1: LIGO Sites: Two remote facilities will be located in Hanford, Wash-
ington and Livingston Parish, Louisiana. The distance between the sites is 3030
kilometers, corresponding to a maximum di�erence in the time of arrival of �10
milliseconds for a gravitational wave.

1 Introduction

The Laser Interferometer Gravitational Wave Observatory (LIGO)[1] is cur-
rently under joint development by the California Institute of Technology and
the Massachusetts Institute of Technology and is funded by the National Science
Foundation. The scienti�c aim of LIGO is the detection and study of cosmic
gravitational waves. Sources of such waves include coalescing compact binary
systems made up of neutron stars and black holes, supernovae, pulsars and the
stochastic background of gravitational waves (the gravitational analog to the
cosmic microwave background). Beyond these known sources of gravitational
waves awaits many great surprises as this new class of instrument opens a never
before observed window on the universe.

Initially, LIGO will consist of three laser interferometers operating in coinci-
dence. Two of these interferometers will be located at the Hanford, Washington
site on the Department of Energy Hanford Nuclear Facility and the third will
be located in Livingston Parish, Louisiana. The Hanford site will house within
a common vacuum envelope, a full length 4 kilometer interferometer and a half
length 2 kilometer interferometer. This ratio of 2:1 will aid in the rejection
of non-gravitational signals by demanding the same ratio of the strain signal
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observed from a true signal. The Livingston site will house a single full length
4 kilometer interferometer providing the needed coincidence for unambiguous
detection.

The vertex of the Hanford instrument is located at the geographic coordi-
nates 46�27018:500N , 119�24027:100W , with the arms oriented toward the north-
west at a bearing of N36:8�W and the southwest at a bearing S53:2�W . The
vertex of the Livingston instrument is located at the geographic coordinates
30�33046:000N , 90�46027:300W , with the arms oriented toward the southeast at
a bearing of S18�E and the southwest at a bearing S72�W . The separation
of the sites is 3030 kilometers, corresponding to a maximum di�erence in the
time of arrival for gravitational waves at the two sites of �10 milliseconds (see
Figure 1). The arms of the interferometers between the two sites are oriented
such that one arm of each interferometer makes the same angle relative to the
great circle that passes through the vertices of the two sites. The second arm at
each site is perpendicular to the �rst and lies very close to the local horizontal
plane. This orientation provides for nearly maximum coincidence sensitivity to
a particular gravitational wave polarization.

Accurate and precise absolute timing resolution will be achieved by stan-
dardizing to the Global Positioning System (GPS) at the two sites. This will
further allow the correlation of LIGO data with other types of detectors, such
as resonant bar detectors, high energy particle detectors and electromagnetic
astronomical observations. The separation between the two sites is su�cient
to eliminate coincidental terrestrial perturbations. A gravitational wave signal
will be correlated at the two sites, thereby verifying detection. In addition, both
sites will use an environmental monitoring system to measure local terrestrial
perturbations. This will improve the rejection of accidental coincidences and
provide important diagnostic capabilities at the sites. When used in conjunc-
tion with the correlation between the two signals from the full length and half
length interferometers at the Hanford site, the environmental monitoring system
will set limits on the broad band search for stochastic background gravitational
waves at the lowest frequencies observable by LIGO.

Project Country N Len (km) Lat Long

LIGO U.S.A. (WA) 2 4:0 & 2:0 46:45�N 119:41�W
LIGO U.S.A. (LA) 1 4:0 30:56�N 90:77�W
VIRGO Italy/France 1 3:0 43:53�N 10:5�E
GEO600 Germany/Britain 1 0:6 52:25�N 9:81�E
TAMA Japan 1 0:3 35:68�N 139:54�E
AIGO Australia 1 1:0 ?? ??

Having two su�ciently separated sites, LIGO will be capable of making con-
�dent detections of gravitational waves. To fully study the scienti�c content
of gravitational waves, LIGO is also planning to operate as a component in an
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international network of broad-band interferometric gravitational wave detec-
tors. Long baseline interferometers for the detection of gravitational waves are
expected to be in operation at the same time as LIGO by the VIRGO Project at
Pisa, Italy and by the GEO600 Project at Hannover, Germany. Both Japan and
Australia are making plans to establish long baseline interferometers. A global
network of detectors, listed in the table above, will be able to fully study the
wealth of information from gravitational waves, including details not possible by
LIGO alone, such as the polarization and source position on the sky. Simultane-
ous detection by several global interferometers will improve the con�dence and
improve the overall signal strength. Resonant bar detectors are also expected to
be on the global network located in Frascati, Italy; Baton Rouge, Louisiana; and
Perth Australia, by the time of the inception of these interferometric detectors.

2 Gravitational Waves

According to the theory of general relativity, compact massive objects such as
neutron stars and black holes warp the geometry of space-time. When these
objects experience an acceleration as is the case in a supernova or the inspiral
of a compact binary system, the geometry of space-time experiences a dynamic
change which propagates at the speed of light in the form of a gravitational
wave[2]. Gravitational waves have yet to be detected directly, though their
indirect inuence has been observed with great accuracy in the binary pulsar
PSR 1913+16 by Russel Hulse and Joseph Taylor[3].

Exploring the universe through gravitational waves will reveal exciting new
astrophysics not observable with electromagnetic radiation. LIGO will provide
information fundamental to our understanding of the interaction of gravity in
the strong �eld strength regime. This will include direct studies on black hole
normal modes and inertial frame dragging around rotating black holes. The
relativistic equations of motion resulting from the post-Newtonian approxima-
tion will be detailed through the studies of compact binary systems containing
neutron stars and black holes during the �nal moment of coalescence. Neutron
star binary systems will provide information on the neutron star equation of
state. LIGO will be able to directly measure the speed of propagation of grav-
itational waves, and working in conjunction with other interferometers will be
able to directly measure the polarization states (instrumental in determining if
the general theory of relativity is the correct theory of gravity). Gravitational
waves from a compact binary inspiral will provide a new distance measure-
ment method allowing an independent determination of the Hubble constant.
Undoubtedly, the most exciting new astrophysics to come out of observations
of gravitational waves will be those phenomena that are unexpected and not
observable with electromagnetic radiation.

The gravitational wave traverses space-time, producing a cyclic elongation
and contraction of bodies in the plane perpendicular to the direction of propaga-
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Figure 2: The distortion on a body that results from passage of a gravitational
wave. The h� polarization is shown on top and h+ polarizations is shown in
the middle for this particular choice of coordinates.

tion. There is negligible absorption, scattering or dispersion of the gravitational
wave as it propagates. The time evolution of the gravitational wave is analogous
to that of electromagnetic waves and is given by

h(~r; t) = h�e
i(~k�~r�!t): (1)

Like the electromagnetic wave, the gravitational wave can be represented by the
superposition of two orthogonal polarizations, h� and h+ which are illustrated
in Figure 2. Gravitational wave emissions from the distribution of massive ob-
jects is dominated by the quadrapole moment Q� (the dipole moment produces
no gravitational radiation). The amplitude of the gravitational wave h� as ap-
proximated by the quadrapole moment is

h� ' G

c4r

d2Q�

dt2
' G

c4r
Ens
kinetic (2)

where the Ens
kinetic is the kinetic energy resulting from non-spherical internal

motions of the source. Consider a typical gravitational wave source located in
the Virgo cluster of galaxies, having a distribution of mass on the order of our
Sun's mass moving at a few tenths of the speed of light. Such a source would at
most produce a strain amplitude on the order of h� � 10�20 and would likely
be several orders of magnitude smaller.

Sources of gravitational waves will come from regions of space-time where
gravity is relativistic and the distribution of matter is experiencing bulk mo-
tions close to the speed of light. Astrophysical candidates for strong gravi-
tational waves most likely to be observed by LIGO include non-axisymmetric
supernovae in our own galaxy, non-spherical collapse of a massive star into a
black hole, nearby rotating neutron stars with asymmetric mass distributions
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Figure 3: h+(t) and h�(t) waveforms for �nal 200 milliseconds of a binary
system composed of two 10 solar mass objects with an inclination angle of 30�

at a distance of 10 megaparsecs.The vertical axis is the strain in units of 10�20.

and the inspiral of compact binary systems such as neutron-neutron, neutron-
black hole, and black hole-black hole binaries. Of these the inspiral of compact
binary systems is the most understood. To Newtonian order, the inspiralling
gravitational waveform is given by

h+(t) =
2G

5
3

c4

�
1 + cos2({)

� �
r
(�Mf)

2
3 cos(2�ft) (3)

h�(t) = �4G
5
3

c4
cos({)

�

r
(�Mf)

2
3 sin(2�ft) (4)

where the polarization axes ~e� and ~e+ are oriented along the major and minor
axes of the projection of the orbital plane on the sky, { is the angle of inclination
of the orbital plane, M = m1 + m2 is the total mass, � = m1m2=M is the
reduced mass and the gravitational wave frequency f , which is twice the orbital
frequency, evolves as a function of time according to

f(t) =
1

�

�
c3

G

� 5
8
�

5

256�M
2
3 (t� � t)

� 3
8

(5)

where t� is the time of coalescence. These waveforms are characterized by
a sinusoidal signal that sweeps up in both frequency and in amplitude as a

6



function of time. This \chirp" signal as it is called, is demonstrated in Figure
3 for both polarizations from a pair of 10 solar mass objects at a distance of
10 megaparsecs (Virgo cluster) and with an orbit inclined at 30� to the source
direction.

The Newtonian order waveforms do not provide the needed accuracy to track
the phase evolution of the inspiral to a quarter of a cycle over the many thou-
sands of cycles that a typical inspiral will experience while sweeping through
the broad band LIGO interferometers. In order to better track the phase evo-
lution of the inspiral, �rst order corrections to the Newtonian quadrapole ra-
diation, known as the post-Newtonian formulation, were worked out in 1976
[4, 5]. However, the post-Newtonian waveforms will not have a su�ciently large
�tting factor to be useful as templates in the search for gravitational waves from
inspiralling compact binaries [6, 26]. The gravitational waveforms from inspi-
ralling compact binaries are now known to second post-Newtonian order [7, 24].
At this order it should be possible to accurately track the phase evolution and
extract parametric information about the binary system such as the masses,
spins, distance and orbital inclination.

3 Principles of Detection

The initial LIGO interferometer con�guration illustrated in Figure 4, consists of
a Michelson interferometer with Fabry-Perot Arm Cavities. The interferometers
are designed to detect di�erential RMS motions between each of the perpendic-
ular arms as small as 10�18 meters. This corresponds to approximately 10�12

of the wavelength of the Nd:YAG laser or equivalently, a phase shift measure-
ment of 10�9 radians. To achieve this level of measurement accuracy, the initial
interferometers will incorporate a highly stabilized laser with an input power
of 6 Watts at the recycling mirror. Recycling factors of 30 or more will be
used to increase the input power to the Fabry-Perot arm cavities. The cavities
will have �nesses on the order of 100, consistent with the requirement that the
light storage time be less than half the period of the gravitational wave to be
detected. All optical components contributing to the phase sensitivity of the
interferometers will be suspended as pendula and isolated seismically to reduce
coupling to thermal and ground motions. The laser wavelength is servo-locked
to the average length (L1 + L2) =2 of the interferometer arms. The optical path
lengths are maintained by a servo-system speci�cally to keep the laser light on
the photodetector and locked to a particular dark fringe.

This optical con�guration requires that four degrees of freedom be controlled
by the servo-systems; the di�erential motion of the cavity L1 � L2 which is
proportional to the gravitational wave signal, the common mode motion of the
cavities L1 + L2, the di�erential motion of the Michelson arms l1 � l2, and the
common mode motion of the Michelson arms l1 + l2.

In order to reduce the laser amplitude uctuation e�ects to below shot noise
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Figure 4: Initial LIGO interferometer con�guration

levels, a modulation scheme is used to shift the measurement to much higher
frequencies in the range of 10 MHz using Pockel cells. Several methods of phase
detection utilizing modulation schemes have been studied [8, 9, 10] and continue
to be considered for use in LIGO. To maximize the sensitivity to any of the four
degrees of freedom, the sideband �elds produced by the phase modulation are
chosen such that the carrier frequency is in resonance in the Fabry-Perot cavity,
while the modulation induced sidebands are not in resonance. Optimization of
the interferometer con�guration involves studies of the multi-dimensional cou-
pled system, including the physical characterizations of all the mirrors. Detailed
studies using sophisticated simulations software developed on scalable parallel
computer architectures are underway.

A gravitational wave couples to the di�erential mode, �L = L1�L2, of the
interferometers. The signal h(t) observed at that anti-symmetric port of the
interferometer is proportional to this and will depend on the direction to the
source relative to the interferometer arms as well as the polarization axes of the
gravitational wave by

h(t) =
�L

L
= F+(�; �;  )h+(t; {; �) + F�(�; �;  )h�(t; {; �) (6)

where h+(t; {; �) and h�(t; {; �) are the two polarizations of the gravitational
wave as a function of time and source orientation on the sky, and F+ and F�
are the detector beam patterns given by
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F+(�; �;  ) =
1

2

�
1 + cos2(�)

�
cos(2�) cos(2 )� cos(�) sin(2�) sin(2 ) (7)

F�(�; �;  ) =
1

2

�
1 + cos2(�)

�
cos(2�) sin(2 ) + cos(�) sin(2�) sin(2 ) (8)

where the angles (�; �) specify the direction from which the gravitational wave
is impinging, and the angle  speci�es the angle the polarization axis is rotated
from the constant � plane. The magnitude of the beam patterns is always less
than or equal to one.

The actual output at the interferometer which results from a gravitational
wave producing the strain signal described by Equation 6 is a�ected by the
light storage time of the Fabry-Perot cavities in the arms. A study of this e�ect
results in the complex response TIFO of the interferometer with arms pointing
along the x and y axes to a gravitational wave of frequency f to be

TIFO(f) =
�(f)

h�(f)
=

8�!cL
2
�

�c
(GxxH(f; kx)�GyyH(f; ky))� 

e
i2�fL�

c

1�2(1� 2!cL�
c )e

i2�fL�
c cos( 2�fL�c )+(1� 2!cL�

c )2e
i4�fL�

c

!
(9)

where h� is the strain from the gravitational wave in the plane perpendicular
to the direction of motion. The functions Gxx and Gxx are given by

Gxx(�; �;  ) = cos(2 )
�
cos2(�) � sin2(�) cos2(�)

� � sin(2 ) sin(2�) cos(�) (10)

Gyy(�; �;  ) = cos(2 )
�
sin2(�) � cos2(�) cos2(�)

�
+ sin(2 ) sin(2�) cos(�) (11)

and the functions H(f; kx) and H(f; ky) are given by

H(f; kx) = sinc

�
2�fL�
c

(sin(�) sin(�)� 1)

�
e(

i�fL�
c

(sin(�) sin(�)+1))

+ sinc

�
2�fL�
c

(sin(�) sin(�) + 1)

�
e(

i�fL�
c

(sin(�) sin(�)�1)) (12)

H(f; ky) = sinc

�
2�fL�
c

(sin(�) cos(�)� 1)

�
e(

i�fL�
c

(sin(�) cos(�)+1))

+ sinc

�
2�fL�
c

(sin(�) cos(�) + 1)

�
e(

i�fL�
c

(sin(�) cos(�)�1)) (13)

with the constants L� being the length of the interferometer arms, and !c being
the knee frequency of the Fabry-Perot cavity given by
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!c =
c

2L�

1� r1r2

r1r2
(14)

where r1 is the reectivity of the vertex mirror of the cavity and r2 is the
reectivity of the end mirror of the cavity and usually taken to be very close to
one.

The response function given by Equation 9 simpli�es greatly for gravitational
wave frequencies less than c=4�L�. For a gravitational strain h(f) given by the
Fourier transform of Equation 6, the response for low frequency gravitational
waves can be approximated by

TIFO =
�(f)

h(f)
' 4�c

�!c

1r
1 +

�
2�f
!c

�2 : (15)

4 LIGO Noise Model

The sensitivity of the LIGO interferometers is limited by irreducible sources
of noise. The noise characterization within the interferometer is of two types:
Gaussian noise which agrees with the probability distribution of Gaussian statis-
tics, and non-Gaussian noise. The non-Gaussian noise may occur several times
per day from events such as strain release in the suspension systems. The only
way to remove these non-Gaussian events is through coincidence comparison of
each of the signals from the three LIGO interferometers.

Gaussian noise has an extremely fast fall o� in probability for increasing
noise amplitude. Because of this, the Gaussian noise is unlikely to generate
noise bursts and can be characterized by an amplitude spectral density ~x(f).
The signal observed at the photodetector consists of the true gravitational wave
strain h(t), plus the Gaussian noise hnoise(t). The amplitude spectral density,
~x(f) is given by the square root of the power spectral density of hnoise(t). When
a gravitational wave having a characteristic strain amplitude hamp and mean
frequency fc is observed by the interferometer for a duration of n cycles, the
measured signal to noise ratio will have the following dependency on the noise

S

N
' hc

hrms
' hamp

p
np

fc~x(fc)
: (16)

It is clear from this expression for the signal to noise ratio that the sensitivity
and performance of LIGO as an instrument for gravitational wave studies is
intimately related to the sources of noise, in particular the Gaussian noise limits
this expression. The dominant sources of noise have been studied using the 40
meter prototype interferometer at Caltech and the 5 meter interferometer at
MIT. Models have been developed based on this research. The remainder of
this section will focus on these Gaussian noise sources that have been modeled,
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along with their associated parameters, and the expected inuence they will
have on the initial sensitivity of LIGO.

4.1 Seismic Noise

At frequencies below approximately 70 Hertz, the noise in the interferometer will
be dominated by \seismic noise." This seismic noise originates from the ambient
vibrations of the ground due to the geological activity of the Earth, wind forces
coupled to trees and buildings, and man-made sources such as tra�c, trains,
motors and pumps. The ground vibrations couple to the mirrors through the
seismic isolation system and the wire suspension which supports the mirrors.

Quiet Hanford Ground Motion

Frequency Range (Hz) Ground Motion (m=
p
Hz)

f < 0:1 5:93� 10�7

0:1 � f < 0:15 5:93� 10�4f3

0:15 � f < 1:0 1:0� 10�9f�4

1:0 � f < 8:0 1:0� 10�9

f � 8:0 6:4� 10�8f�2

Noisy Hanford Ground Motion

Frequency Range (Hz) Ground Motion (m=
p
Hz)

f < 0:1 5:93� 10�7

0:1 � f < 0:15 5:93� 10�4f3

0:15 � f < 1:0 1:0� 10�9f�4

1:0 � f < 10:0 1:0� 10�9

f � 10:0 1:0� 10�7f�2

Livingston Ground Motion

Frequency Range (Hz) Ground Motion (m=
p
Hz)

f < 0:1 1:33� 10�6

0:1 � f < 0:15 1:33� 10�3f3

0:15 � f < 1:3 2:36� 10�8f�3

1:3 � f < 1:5 7:0� 10�9

f � 1:5 1:58� 10�8f�2

The three tables above give the piece-wise continuous �ts to the measured
ground motions at the sites used to model the seismic noise in the LIGO inter-
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ferometers. There are two such �ts for Hanford, one representing quiet times
when the wind is light and noisy for times when the wind has moderate strength.
The Livingston site has less variation in ground motion and has only one �t.

The ground motion is transmitted to the top of the seismic isolation system
through four stages composed of compact mass elements on separate legs, sep-
arated by vacuum compatible elastomer springs. This design reduces the Q's of
internal resonances while maintaining high frequency isolation. In general, how
such a system couples ground motion through the system is given by a set of
equations of the form

~Xi;top(f) = Tij;stack(f) � ~Xj;grd(f): (17)

The seismic isolation stack is nearly cylindrical in shape. Taking this into ac-
count, a simpli�cation on the number of degrees of freedom coupled to the
ground motion can be fully utilized. The system can then be described by a
two dimensional transfer matrix�

~xtop(f)
~ztop(f)

�
=

�
Txx(f) Txz(f)
Tzx(f) Tzz(f)

��
~xgrd(f)
~zgrd(f)

�
: (18)

Horizontal motion is also coupled to tilt in this simpli�ed model. The resultant
horizontal motion at the stack suspension point that results from transmission
along the down-tube of length LDT with stack support legs out a distance R
from the center is given by

~xpitch(f) =
2LDT
R

Tzx(f) � ~xgrd(f): (19)

Using these simpli�cations the two dimensional transfer function has been mea-
sured from a prototype seismic isolation stack located at MIT[11] and appropri-
ately scaled to the LIGO con�guration. The transmission curves for Txx, Txz,
Tzx and Tzz, are shown in Figure 5.

Transmission from the top of the stack to the stack suspension point at the
base of the down-tube for the (x; z) components is given by

~xsuspension(f) =
q
~x2top(f) + ~x2pitch(f) (20)

~zsuspension(f) = ~ztop(f): (21)

The motion found at the stack suspension point is further translated into motion
at the mirrors through the pendulum's horizontal and vertical transmission.
Neglecting cross coupling terms, the motion at the mirror surface is given by

~xmirror(f) = Thorizontal pendulum(f) � ~xsuspension(f) (22)

~zmirror(f) = Tvertical pendulum(f) � ~zsuspension(f) (23)
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Figure 5: LIGO Seismic Isolation System transfer functions for the simpli�ed
two dimensional model. Transfer functions are based on measurements made
on a prototype which have been scaled to the LIGO design.

where the horizontal pendulum transfer function Thorizontal pendulum(f) and the
vertical pendulum transfer function Tvertical pendulum(f) are given by

Thorizontal pendulum(f) =
QHf

2
H

�
f2H � f2

�� iQHf
3
Hf

Q2
H(f

2
H � f2)

2 � f2Hf
2

(24)

Tvertical pendulum(f) =
QV f

2
V

�
f2V � f2

�� iQV f
3
V f

Q2
V (f

2
V � f2)

2 � f2V f
2

: (25)

Due to the curvature of the Earth over the 4 kilometer arm lengths, the
local surface horizontal and the laser beam will di�er by a small angle ��. This
provides a coupling between the local vertical motion of the mirror and dis-
placements along the beam axis. When this coupling is taken into e�ect, the
total displacement along the beam from the ground motion transmitted to the
mirrors is given by

~xbeam(f) =

q
~x2mirror + (�� � ~zmirror)

2
: (26)

The seismic noise found in the interferometer will be given by the root square sum
of the displacement from each mirror's motion along the beam. The resultant
seismic noise for the interferometer is given by
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~xSeismic(f) =

vuut 4X
i=1

~x2beam;i(f) ' 2~xbeam(f): (27)

The seismic noise model combines these expressions with the measured transfer
functions and ground motion. The model also includes a set of free parameters
which have been measured in the laboratory or speci�ed in the LIGO design.
These parameters are given in the following table.

Parameter Symbol Value Units

horizontal pendulum frequency fH 0:744 Hertz
horizontal pendulum quality factor QH 3:33� 105 factor

vertical pendulum frequency fV 13:0 Hertz
vertical pendulum quality factor QV 333:3 factor

local beam angle �� 3:1� 10�4 radians
down tube length LDT 0:90 meters
lever arm length R 0:63 meters

4.2 Thermal Noise

At frequencies above approximately 70 Hertz and below approximately 200 Hz,
the noise in the interferometer will be dominated by thermal noise sources.
LIGO will operate at room temperatures (� 295�K). The dominant sources
of this noise are the thermally induced o�-resonance vibrations of the mirrors,
suspensions and the top plate of the seismic isolation system. Thermally ex-
cited resonance vibrations of the mirrors and suspensions do appear at higher
frequencies where shot noise dominates. The inuence of high Q thermally
induced resonances in the mirrors and suspensions will be important for under-
standing the broadband performance of the interferometer and are included in
the models for thermal noise.

4.2.1 Top Plate Thermal Noise

Thermal excitations of the last stage of the seismic isolations system induce
motions at the suspension point which are transferred to the mirrors. This
particular source of thermal noise is not limiting in the initial LIGO detector,
but is important for the understanding of the sources of sensitivity limitations
in more advanced detector designs.

There are two possible damping mechanisms [12] in the top plate, velocity
damping and internal damping. Velocity or viscous damping is likely to give a
higher noise oor in the region dominated by thermal noise sources, since the
power spectrum above resonance for this type of damping falls o� as 1=f4. The

14



expression used for the power spectral density of the motion in the top plate is
given by

~x2velocity =
4kBTfvel

8�3m
�
Qvel(f2vel � f2)

2
+ f2velf

2
� : (28)

For internal or structural damping, the power spectrum above resonance falls o�
as 1=f5. The expression for the power spectral density of the top plate motion
is given by

~x2internal =
4kBTf

2
int�int

8�3mf
�
(f2int � f2)

2
+ f4int�

2
int

� : (29)

Both of these thermal excitations couple to the mirror motion through the
pendulum transfer function. The vertical thermal excitations which couple to
the mirror motion along the beam axis through the Earth's curvature are several
orders of magnitude less than the seismic induced vertical motions at the top
plate and therefore will be neglected in this model. The horizontal pendulum
transfer function is given by Equation 24. When taken together, the motion
along the beam from the thermal modes of the top plate gives

~xbeam(f) = Thorizontal pendulum(f) � ~xf velocity

internalg(f) (30)

where
n
velocity
internal

o
represents the type of damping mechanism used to determine

the amplitude spectral density and in general is selected to be velocity damping
in the model. Each seismic isolation stack's top plate contributes to the noise
in the interferometer. The sum over each stack's top plate gives

~xTopplate(f) =

vuut 4X
i=1

~x2beam;i(f) ' 2~xbeam(f): (31)

The top plate thermal noise model combines these expressions with the following
set of parameters which have been measured in the laboratory or speci�ed in
the LIGO design.

Parameter Symbol Value Units

temperature T 295:37 Kelvin
top plate mass m 250:0 kilograms

velocity damped frequency fvel 4:0 Hertz
velocity damped quality factor Qvel 3:0 factor
internal damped frequency fint 6:0 Hertz

internal damped loss function �int 0:333 factor
horizontal pendulum frequency fH 0:744 Hertz

horizontal pendulum quality factor QH 3:33� 105 factor
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4.2.2 Pendulum and Violin Mode Thermal Noise

A major source of noise for the initial LIGO in this frequency range is the
thermally induced vibration of the pendulum. Determining the damping of the
pendulum at frequencies far from the pendulum resonance is di�cult. In order
to estimate the pendulum's damping, the violin quality factor QV is used. The
pendulum thermal noise [13] associated with a single suspended mirror is given
by

~x2pendulum(f) =
4kBT�P f

2
P

8�3mf
�
(f2P � f2)

2
+ �2P f

4
P

� (32)

where the pendulum mode loss function is related to the violin loss function by
the relationship

�P =

NwiresX
i=1

�V

2Nwires
: (33)

LIGO will use a single loop suspension to support the mirrors. Thus in equation
33, Nwires is two. The relationship between the pendulum loss function and the
violin loss function therefore reduces to

�V = 2�P : (34)

The thermal noise from the violin modes are also important in modeling the ther-
mal noise of LIGO. The violin thermal noise associated with a single suspended
mirror is given by the sum over all harmonics of the fundamental frequency fV ,

~x2violin(f) =

NmodesX
k=1

4kBT�V f
2
P

8�3mf

��
(kfV )

2 � f2
�2

+ �2V (kfV )
4

� : (35)

The combined thermal noise from the pendulum and violin modes associated
with a single loop suspension is given by the root square sum of equations 32
and 35

~xloop(f) =
q
~x2pendulum(f) + ~x2violin(f): (36)

The total thermal noise found in the interferometer from the pendulum and
violin modes of all four suspensions supporting the mirrors is given by the sum

~xwires(f) =

vuut 4X
i=1

~x2loop;i(f) ' 2~xloop(f): (37)
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The suspension's pendulum and violin mode thermal noise model combine these
expressions with measured or LIGO speci�ed parameters that are listed in the
following table.

Parameter Symbol Value Units

temperature T 295:37 Kelvin
mirror mass m 10:8 kilograms

pendulum frequency fP 0:744 Hertz
pendulum loss function �P 3:0� 10�6 loss

fundamental violin frequency fv 376:0 Hertz
violin loss function �V 6:0� 10�6 Hertz
number of harmonics Nmodes 32 number

4.2.3 Vertical Spring Mode Thermal Noise

Another source of noise in the suspension is the vertical spring mode. Thermally
induced vibrations of this mode do not contribute signi�cantly to the total
thermal noise of the initial interferometers but the characterization of this noise
is important in the design of LIGO. The thermally driven vertical motion is
given by

~z2(f) =
4kBTf

2
V �V

8�3mfV

�
(f2V � f2)

2
+ f4V �

2
V

� : (38)

The thermally induced vertical motion ~z(f) along the pendulum wires couples
to the mirror displacement as a result of the curvature of the Earth

~xbeam = �� � ~z(f): (39)

Combining this motion along the beam axis from all four mirrors gives

~xvertical spring =

vuut 4X
i=1

~x2beam;i(f) ' 2~xbeam(f): (40)

The suspension's vertical spring mode thermal noise model combines these ex-
pressions with measured or LIGO speci�ed parameters listed in the table below.

Parameter Symbol Value Units

temperature T 295:37 Kelvin
mirror mass m 10:8 kilograms

vertical pendulum frequency fV 13:0 Hertz
vertical pendulum loss function �V 3:0� 10�3 loss

local beam angle �� 3:1� 10�4 radians
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4.2.4 Pitch and Yaw Mode Thermal Noise

Two remaining sources of thermal noise within the suspension system are in-
corporated within the initial LIGO noise model. These are the pitch and yaw
modes of the mirrors. For small amplitudes, these modes contribute to the mo-
tion of the mirrors along the beam in proportion to the degree of o�-centering,
(�y;�z), of the beamspot on the mirror. The power spectral density for the
pitch mode is given by

~x2beam(f) =
4kBT�z

2�P f
2
P

8�3IP f
�
(f2P � f2)

2
+ �2P f

4
P

� (41)

which when combined for all four mirrors results in the total pitch mode thermal
noise being

~xpitch(f) =

vuut 4X
i=1

~x2beam;i(f) ' 2~xbeam(f): (42)

The suspension's pitch mode thermal noise model combines these expressions
with measured or LIGO speci�ed parameters listed in the table below.

Parameter Symbol Value Units

temperature T 295:37 Kelvin
mirror pitch moment of inertia IP 5:12� 10�2 kg=m2

beam centering deviation �z 1:0� 10�3 meters
pitch mode frequency fP 0:6 Hertz

pitch mode loss function �P 8:0� 10�4 loss

Similarly, the power spectral density for the yaw mode is given by

~x2beam(f) =
4kBT�y

2�Y f
2
Y

8�3IY f
�
(f2Y � f2)

2
+ �2Y f

4
Y

� (43)

which, when combined for all four mirrors results in the total yaw mode thermal
noise being

~xyaw(f) =

vuut 4X
i=1

~x2beam;i(f) ' 2~xbeam(f): (44)

The suspension's yaw mode thermal noise model combines these expressions
with measured or LIGO speci�ed parameters listed in the table below.
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Parameter Symbol Value Units

temperature T 295:37 Kelvin
mirror yaw moment of inertia IY 5:12� 10�2 kg=m2

beam centering deviation �y 1:0� 10�3 meters
yaw mode frequency fY 0:5 Hertz

yaw mode loss function �Y 2:5� 10�4 loss

4.2.5 Mirror Internal Mode Thermal Noise

Thermally excited vibrations of the mirror's internal modes contribute signif-
icantly to the thermal noise within this frequency region[14]. In the model
used to calculate this source of thermal noise, the mirrors are treated as three-
dimensional bodies[15] and the cumulative e�ects from the modes is tracked in
order to accurately reach convergence. The coupling of the mirror modes to
the optical modes is carefully treated allowing a more detailed estimate of the
motion along the optical path length a�ecting the interferometer sensitivity.

The power spectral density associated with a particular internal mode of the
mirror is given by

~x2n(f) =
4kBT

8�3�nmf

 
f�n(f)

(f2n � f2)
2
+ f4n�n(f)

!
(45)

where �n is the e�ective mass coe�cient which characterizes the contribution
to the thermal noise for the n-th mode

�n =
1
2kBT

1
2m!n�l

2
n

: (46)

The e�ective mass coe�cient �n is a measure of the coupling of the optical
mode  00 (only the TEM00 mode is considered since other modes do not resonate
in the Fabry-Perot cavity) to the mirror's internal mode surface displacement
un, by the integral

�ln =
�

2�

I
S

 �00 00

�
~k � ~un

�
d� (47)

where the phase shift experienced by the optical mode upon reection o� the
mirror is given by

 00(�; �; z) =  00(z)e
i2~k�~un(�;�): (48)

Expanding this for the case of small j ~k � ~un j leads to the simpli�cation

 00(�; �; z) '  00(z)

�
1 + i2~k � ~un(�; �) � 2

�
~k � ~un(�; �)

�2�
: (49)
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Figure 6: The cumulative contribution to the internal thermal noise of each of
the 4 kilometer interferometer mirrors. The mirror dimensions are 12:5 centime-
ters in radius by 10 centimeters in length. The beamspot sizes for the vertex
and end mirrors are 3:634 and 4:565 centimeters respectively. The cumulative
summing was carried out to a maximum resonant frequency of 3:0� 105 Hertz.

Losses in the mirror substrate are assumed to be independent of frequency. This
is in agreement with current experimental results in fused silica [16]. All modes
are taken to have the same loss function, hence the quality factor is given by

�n(f) =
1

Qn
' constant: (50)

The modes are summed until a reasonable convergence is reached in the cumu-
lative thermal noise as illustrated in Figure 6

~xmodes(f) =

sX
n

~x2n(f): (51)

Combining all four mirrors results in the total mirror internal mode thermal
noise

~xMirror(f) =

vuut 4X
i=1

~x2modes;i(f) ' 2~xmodes(f): (52)
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Figure 7: The contours illustrate the dependency of the mirror's internal mode
thermal noise on the cylinder dimensions at 100 Hertz for the 4 kilometer inter-
ferometer's mirrors.

This model has been applied to study dependency of the thermal noise on the
dimensions of the mirror. This is extremely computationally intensive, requiring
thousands of node hours on a Sun network. The results of the calculations
are shown in Figure 7 and suggest the optimum dimensions for the mirror.
The mirror internal mode thermal noise model combines these models with
measurements and LIGO speci�ed parameters listed in the following table.

Parameter Symbol Value Units

temperature T 295:37 Kelvin
mirror density � 2200:0 kg=m3

mirror radius Rmirror 0:125 meters
mirror length L 0:10 meters

mirror loss function � 4:0� 10�7 loss
minimum mode frequency fmin 1000:0 Hertz
maximum mode frequency fmax 250000:0 Hertz

number of radial series terms NR 30 number
number of axial series terms NZ 30 number
vertex beamspot radius Rv 0:03634 meters
end beamspot radius Re 0:04565 meters
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4.3 Shot Noise

At frequencies above approximately 200 Hertz the noise in the interferometer is
dominated by shot noise. This noise source is the result of the random nature
of the photon arrival times at the photodetector. The highly sensitive optical
arrangement to be used in LIGO implements phase modulation. The modu-
lation scheme shifts the gravitational wave signal to higher frequencies, away
from technical noises, and then after demodulation the signal is recovered free
of those technical noises [17]. These schemes also provide additional signals
for use in monitoring and controlling the interferometer's optical path length
degrees of freedom. However, these schemes modify the standard shot noise
formula, which assume constant light power. When the e�ects of the LIGO
modulation scheme and power recycling are taken into e�ect, the equivalent to
displacement amplitude spectral density from the phase noise induced by the
shot noise if given by [18]

~xShot(f) =

 
�
p
3E2

SB +E2
DC

4�ERCESB

(1� r1r2)
2

(1� r21 � L1) r2

!s
1 +

�
2�f

!c

�2

(53)

where the E2
SB is the electric �eld power in the sidebands produced by the phase

modulation

E2
SB =

��PinJ
2
1 (�)

hc
; (54)

E2
RC is the electric �eld power in the recycling cavity

E2
RC =

��PinGJ
2
0 (�)

hc
(55)

and E2
DC is the total DC power on the photodetector from asymmetries in the

arm cavity as well as other sources of stray power such as higher order spatial
modes

E2
DC = Pstray : (56)

The Fabry-Perot cavity pole frequency !c is a function of the cavity length and
reectivities of the mirrors and is given by

!c =
c

2L�

1� r1r2

r1r2
: (57)

The shot noise model outlined above is combined with parameters listed in the
table below which are based on LIGO design speci�cations.
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Parameter Symbol Value Units

input laser power Pin 6:0 watts
recycling gain G 30:0 factor

modulation depth � 0:45 fraction
photodiode e�ciency � 0:80 fraction
vertex reectivity r1 0:9849 amplitude
end reectivity r2 0:999995 amplitude
vertex losses L1 50:0 ppm
wavelength � 1:064� 10�6 meters
arm-length L� 4000:0 meters

4.4 Radiation Pressure Noise

Photons in the laser light induce a second source of noise in the interferometer
known as radiation pressure noise. This noise arises from the forces imparted on
the mirrors as statistically di�erent numbers of photons reect o� the mirrors
in the two arms. The amplitude spectral density for this process is given by

~xRP (f) =
N
mf2

r
2�hGPin
�3c�

(58)

The number of characteristic bounces of the light N appearing in this expression
is related to the �nesse F of the Fabry-Perot cavity,

F =
�
p
r1r2

1� r1r2
(59)

through the relationship

N =
2F
�

=
2
p
r1r2

1� r1r2
: (60)

The radiation pressure noise model outlined above is combined with parameters
listed in the table below which are based on LIGO design speci�cations.

Parameter Symbol Value Units

mirror mass m 10:8 kilograms
input laser power Pin 6:0 watts
recycling gain G 30:0 factor
wavelength � 1:064� 10�6 meters

vertex reectivity r1 0:9849 amplitude
end reectivity r2 0:999995 amplitude
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4.5 Residual Gas Phase Noise

The LIGO interferometer will operate at pressures on the order of 10�9 Torr.
This e�ectively isolates the mirrors and suspension from e�ects such as acoustic
coupling and mechanical damping. But statistical uctuations in the e�ective
index of refraction of the residual gas within the beam tube resulting from
variations in the column density seen by the laser beam can limit the strain
sensitivity. At the expected partial pressures, this will not be a major source of
noise for the initial LIGO but it will place limits on the sensitivity achievable
for advanced LIGO interferometers of the future.

The total amplitude spectral density from the residual gas phase noise is
given by the root square sum of the contributions from each gas species found
within the beam tube

~xRG(f) =

vuut nX
i

~xi
2(f): (61)

Each gas species has a contribution to the above expression which depends on
the partial pressure P , polarizability � and mass m of the gas molecule [19].
The contribution is also dependent on the shape of beam waist w(z) along the
beam axis

~xi
2(f) =

8�i(2��i)
2

v�i

Z z2

z1

e
�

�
2�fw(z)

v�i

�
w(z)

dz: (62)

The location of the minimum cross section of the beam is given by z1, with the
beam extending along the beam axis from z1 to z2 in these coordinates

z1 = �L� g2 (1� g1)

g1 + g2 � 2g1g2
; z2 = z1 + L�; (63)

where g1 and g2 are functions of the radii of curvature for the vertex and end
mirrors of the cavity

g1 = 1� L�

R1
; g2 = 1� L�

R2
: (64)

The minimum cross section for the beam is found using the expression

w� =

s
�L�

�

p
g1g2 (1� g1g2)

(g1 + g2 � 2g1g2)
(65)

and the cross section at any point z along the beam is given by

w(z) = w�

s�
�z

�w�2

�2

+ 1: (66)
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The gas species' most probable speed v� depends on the mass and temperature
of the molecule

v�i =

r
2kBT

mi
(67)

and the number density for the gas species depends on the pressure and tem-
perature

�i =
Pi

RT
: (68)

The set of parameters relevant to the residual gas phase noise for LIGO are given
in the table below. A factor of 133:3224 is used to convert partial pressures Pi
from Torr to N=m2 before using the number density in the amplitude spectral
density formula.

Parameter Symbol Value Units

armlength L� 4000:0 meters
wavelength � 1:064� 10�6 meters
temperature T 295:37 Kelvin

vertex mirror curvature R1 14558:0 meters
end mirror curvature R2 7402:0 meters

The current model also uses parameters for eight of the most prevalent gas
species being considered in the calculation. The pressures listed in the last
column are representative of expected values for LIGO.

Molecule m (amu) � (m3) P (Torr)

hydrogen 2 7:4� 10�19 5:0� 10�9

water 18 1:4� 10�18 < 1:0� 10�9

nitrogen 28 1:6� 10�18 < 1:0� 10�9

oxygen 32 1:6� 10�18 < 1:0� 10�9

carbon monoxide 28 1:8� 10�18 < 1:0� 10�9

carbon dioxide 44 2:38� 10�18 < 1:0� 10�9

methane 16 2:36� 10�18 < 1:0� 10�9

hydrocarbon X �H2
(0:74 + 0:137X) � 1:0� 10�9

4.6 Seismic Gravity Gradient Noise

The ambient ground motions near the interferometers induce density uctua-
tions which give rise to uctuating gravitational forces on the mirrors. These
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in turn constitute a source of noise in the interferometer know as seismic grav-
ity gradient noise. The model for this noise source is based on the theory of
Rayleigh and Love waves, which are the dominant form of seismic waves in the
frequency range of interest to LIGO [20]. Unlike the seismic noise sources which
can in principle be isolated from the mirrors with a su�ciently advanced seismic
isolation system, the gravity gradient noise sources act at a distance through
the gravitational force. Hence, even though it is not a major noise source for
the initial LIGO, it does play a role at low frequencies to limit sensitivity for
advanced LIGO interferometers.

The ground motion (given in the discussion on Seismic Noise) is transmitted
to the mirror by the gravity gradient transfer function TGG

~xGG(f) = TGG(f) ~Xgrd: (69)

The actual form of this transfer function depends on the theory of Rayleigh and
Love waves and on the geological details of the sites chosen for LIGO. Because
of the di�erences in the geology of between the Hanford and Livingston sites,
two unique transfer functions are used by the model.

4.6.1 Livingston Transfer Function

The geological survey of the Livingston site reveals a nearly homogeneous clay-
like material down to depths of greater than 10 meters. Under these conditions,
the theory allows the site to be treated as a single homogeneous isotropically
elastic medium bounded above by vacuum (air). The transfer function for this
site is given by

TLA(f) =
2(1� q)

1� 2qs
1+s2

G�
�
2�fl�
cR

�
q
(f2 � f2

�
)
2
+ f2

�2�

(70)

where the function  is given by

(�) =

s
1 +

1

2�

Z 2�

0

cos(�) sin(�) cos

�
�
cos(�) + sin(�)p

2

�
d�: (71)

The dimensionless parameters q and s represent the ratio of the vertical e-folding
rate to horizontal wave number for the longitudinal and transverse components
of the Rayleigh waves in the ground

q =

s
1� c2R

c2L
; s =

s
1� c2R

c2T
(72)

and the parameter �� is the damping time of the horizontal pendulum mode of
the mirror suspension system
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�� =
Q�

�f�
: (73)

The value for the parameters entering into the expressions for the Livingston
transfer function TLA are given in the following table and are based on LIGO
design speci�cations and geotechnical data from the Livingston site.

Parameter Symbol Value Units

pendulum frequency f� 0:744 Hertz
pendulum quality factor Q� 3:33� 105 factor
vertex mirror separation l� 4:1 meters

ground density � 2000:0 kg=m3

P-wave sound speed cL 500:0 m=s
Raleigh sound speed cR 188:0 m=s
S-Wave sound speed cT 200:0 m=s

4.6.2 Hanford Transfer Function

The geological survey of the Hanford site reveals cemented soils down to depths
of approximately 200 meters. Sound speed measurements taken from bore holes
indicate a two-layer strati�cation near the surface. The top layer extends to a
depth of roughly 5 meters, and the second layer extends from there to a depth of
over 20 meters Under these conditions, the theory allows the site to be treated
as two homogeneous isotropic elastic media with a common boundary at the
depth D � 5 meters, unbounded below the interface and bounded above by
vacuum (air). The transfer function for this site is given by

TWA(f) =
2(1�q1)

1�
2q1s1

1+s2
1

G�1
�
2�fl�
cR

�q
(f2�f2� )

2+ f2

�2
�

�

�
1 + e�(q1+1)kD + �2

�1

1�q2
1�q1

�
q1s2�1
q2s2�1

e�(q1+1)kD � 2e�(q1+1)kDq1(s2�s1)

(q2s2�1)(s21+1)

��
(74)

where the function  is given by

(�) =

s
1 +

1

2�

Z 2�

0

cos(�) sin(�) cos

�
�
cos(�) + sin(�)p

2

�
d�: (75)

The dimensionless parameters q1 and s1 represent the ratio of the vertical e-
folding rate to horizontal wave number for the longitudinal and transverse com-
ponents of the Love waves in the top layer
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q1 =

s
1� c2R

c2L1
; s1 =

s
1� c2R

c2T1
(76)

and as before, the parameter �� is the damping time of the horizontal pendulum
mode of the mirror suspension system

�� =
Q�

�f�
: (77)

The value of q2 and s2 must be solved in a consistent manner to guarantee
continuity of the stress across the boundary layer found at the depth z = D

at the Hanford site. This is achieved by having q2 and s2 satisfy the following
equations for the given values of q1 and s1

2q1
�
e�q1kD � e�s1kD

�
= �2

�1

�
2q2F1 +

�
s22 + 1

�
F2
s2

�
(78)

e�q1kD
�
K1

�1

�
1� q21

�� 2
3

�
2q21 + 1

��
+ 4 q1s1

s2
1
+1
e�s1kD

= F1

�
K2

�1

�
1� q22

�� 2�2
3�1

�
2q22 + 1

��� 2�2
�1
F2 (79)

where the constants �1, �2, K1 and K2 depend on the geological properties of
the Hanford site and are given by

�1 = c2T1�1; �2 = c2T2�1 (80)

K1 = c2L1�1 �
4

3
�1; K2 = c2L2�2 �

4

3
�2; (81)

the Love wave's horizontal wave number for both the top and bottom layers is
given by

k =
2�f

cR
(82)

and the remaining functional simpli�cations used to solve q2 and s2 above are
given by

F1 = 1
q2s2�1

�
(q1s1 � 1) e�q1kD � 2q1(s2�s1)

s2
1
+1

e�s1kD
�

(83)

F2 = s2
q2s2�1

�
(q2 � q1) e

�q1kD � 2q1(q2s1�1)

s2
1
+1

e�s1kD
�
: (84)

The value for the parameters entering into the expressions for the Hanford
transfer function TWA are given in the following table and are based on LIGO
design speci�cations and geotechnical data from the Hanford site.
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Parameter Symbol Value Units

pendulum frequency f� 0:744 Hertz
pendulum quality factor Q� 3:33� 105 factor
vertex mirror separation l� 4:1 meters
upper ground density �1 2000:0 kg=m3

lower ground density �2 2000:0 kg=m3

upper P-wave sound speed cL1 600:0 m=s
lower P-wave sound speed cL1 1550:0 m=s

Raleigh sound speed cR 253:8 m=s
upper S-Wave sound speed cT1 270:0 m=s
lower S-Wave sound speed cT1 420:0 m=s

boundary depth D 5:0 meters

4.7 Quantum Limit

The standard quantum limit for LIGO illustrates the fundamental limitations
to measurement imposed by quantum mechanics and the uncertainty principle.
The standard quantum limit is not a limiting noise source in the initial LIGO
interferometers. However, it does set a fundamental limit on the sensitivity
achievable in gravitational wave detectors possessing this technical design.

Determination of the standard quantum limit hinges on optimization of the
total optical readout noise. The total power in optical readout noise in the
interferometer is given by the sum of the power in the shot noise with the power
in the radiation pressure noise. The shot noise decreases with power while the
radiation pressure noise increases with power

~xoptical(f) =
q
~x2Shot(f) + ~x2RP (f): (85)

Because of this, it is possible to �nd a minimum in the optical readout noise.
This minimum optical readout noise can be found by choosing the power Pin to
satisfy, at any particular frequency �f , the relationship

~x2Shot(
�f) = ~x2RP (

�f): (86)

Solving this equation will result in the optimal input power, which is given by
a relationship which is functionally dependent on the frequency

Poptimal(f) =
��cmf2

2N 2
: (87)

When this Poptimal is substituted into the equation for ~xoptical(f), the result is
the standard quantum limit. It expresses the fundamental quantum mechanical
limit to measurement
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~xQL(f) =
1

�f

r
2�h

m
: (88)

The interesting feature of the standard quantum limit is that it only depends
upon a single parameter, the mass of the mirrors.

Parameter Symbol Value Units

mirror mass m 10:8 kilograms

4.8 Summary of Noise Models

The noise sources outlined in this section have been incorporated into a software
package, which runs under the AVS environment. Each noise model exists as a
separate module in this environment. All modules use a common database to
access the required parameters used to characterize the noise sources in the 4
kilometer interferometers that LIGO is building in Hanford and Livingston. A
sophisticated adaptive spacing algorithm is used in all models to guarantee that
all details associated with high Q features in the noise sources are accurately
represented. The result of running this LIGO noise software package is plotted
in Figure 8. The �gure includes the root square sum of all the sources (red
curve) as well as the noise sensitivity goal set by LIGO (black curve).

The Hanford site will also include a half length 2 kilometer interferometer
to provide added con�dence requirements to any gravitational wave signals de-
tected. A half dozen parameter di�er in the proposed design of the 2 kilometer
interferometer. These are listed in the following table.

Parameter Symbol 4km IFO 2km IFO Units

arm-length L� 4000:0 2000:0 meters
vertex beamspot radius Rv 0:03634 0:0288 meters
end beamspot radius Re 0:04565 0:0288 meters

vertex mirror curvature r1 14558:0 4732:0 meters
end mirror curvature r2 7402:0 4732:0 meters

vertex mirror separation l� 4:1 8:2 meters

Using these parameters, the LIGO noise software package produces the set of
plots shown in Figure 9 for the 2 kilometer interferometer at Hanford. The red
curve for the root square sum reveals that the thermal noise in the 2 kilometer
interferometer limits the sensitivity in the region around 100 to 200 Hertz to
above the 4 kilometer design sensitivity shown by the black curve. A design
sensitivity has not been speci�ed for the 2 kilometer interferometer at this time.
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Figure 8: Summary of initial LIGO noise models for the 4 kilometer interfer-
ometer.
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Figure 9: Summary of initial LIGO noise models for the 2 kilometer interfer-
ometer.
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Figure 10: The Corner Station Complex showing the Laser and Vacuum Equip-
ment Area (LVEA), the Operations and Support Building (OSB) and the beam
tubes extending out of the �eld of view.

5 Implementation

Land at both sites have been cleared. The Hanford site has been graded and
the beam tube slabs have been poured. The building construction contract has
just been awarded as of this writing in the summer of 1996. Final grading of the
Livingston site is currently underway. Fabrication of the beam tube has begun.
Research and development continues at both Caltech and MIT, where design
and implementation of the initial LIGO detector is progressing in the areas of
recycling, wavefront sensing, lock acquisition and others.

5.1 Facilities

The two sites will each have a corner stations complex (see Figure 10) to house
the lasers, vertex interferometer components and vacuum equipment (LVEA).
The complex will include an Operations and Support Building (OSB) to house
the control rooms, labs and o�ce space. Each site will also include two end sta-
tions to house the vacuum equipment and optics associated with the end mirrors.
The Hanford site will have two mid-stations to house the vacuum equipment
and optics associated with the 2 kilometer interferometer's end mirrors.

The corner, mid and end stations will be connected by the welded stainless
steel beam tube (see Figure 11) in which the long arms of the Fabry-Perot

32



Figure 11: Cut-away view of the LIGO beam tube supported by a slab and
covered by the beam tube enclosure.

cavities will be contained. The beam tube will be covered by a beam tube
enclosure built from cast concrete in 3 meter long sections. The enclosure will
have a height of 2:7 meters and a width of 4 meters. It will provide protection to
the beam tube from wind and stray bullets from hunters and give some degree
of passive temperature stabilization.

The facilities have been designed to reduce environmental noise from vibra-
tions and acoustic noise. The designs also address the necessary shielding and
isolation of electromagnetic noise sources and electrical grounding. The sites
for LIGO have been selected based on their quiet ambient ground motion and
remote locations.

5.2 Beam Tube and Vacuum System

The beam tube, illustrated in Figure 11, is being built in modular lengths of 2
kilometers each, with approximately 100 kilometers of welding. The diameter
of the beam tube is 1:22 meters. Approximately 300 internal ba�es will be used
in each arm to reduce scattered light phase noise. The ba�es are being coated
with a \black glass" similar to coatings used in household ovens.

Air leakage rates will be less than 10�9atm cc=second. All residual species of
gas will have partial pressures of less than 10�9 Torr in the advanced LIGO. Leak
tests made on the prototype produced results of less than 10�11atm cc=second.
Quality control and cleanliness during the fabrication and integration are being
systematically pursued in order to guarantee a long lifetime with the speci�ed
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leak rates.
Together with the vacuum system, roughly 2�105meters3 of ultra-high vac-

uum will provide a clear aperture for the interferometer, as well as an optically
clean environment for the precision optics. The chambers of the vacuum system
will be large enough to allow easy access to interferometer components during
installation and maintenance periods.

5.3 Control and Data System

The LIGO Control and Data System (CDS) is an advanced control and data
system using state of the art hardware components and network architecture.
The system will manage unique aspects of LIGO such as control and monitoring,
interferometer diagnostics and data acquisition. Timing for the CDS will be
derived from Global Positioning System (GPS). Hardware will be based on
standard VME crates and integrated modules.

System 2 Hz 256 Hz 2048 Hz 16384 Hz Total

Suspension 120 90 30 60 300
Prestabilized Laser 20 10 5 8 43
Mode Cleaner 30 20 10 20 80
Input Optics 20 15 5 10 50
IFO Readout 20 15 0 30 65
Alignment 20 15 0 0 35

Channels/IFO 230 165 50 128 573
KBytes/sec/IFO 0:9 84:5 204:8 4194:3 4484:5

Auxiliary 0 200 10 30 240
Housekeeping 300 50 20 0 370
Channels/Site 300 250 30 30 610
KBytes/sec/Site 1:2 128 122:9 983:0 1235:1

The CDS system will control and monitor the interferometer, the vacuum
system and the physical environment. Data sample rates, shown in the table
above, will range from 2 sample per second up to 16K samples per second. Data
collection from each interferometer is estimated to be 6 megabytes per second
and will collect data from approximately 1500 channels per interferometer. The
data will be recorded to tape using a \framebuilder" to write the data in frames
of a compatible format with other gravitational wave research groups. The data
stored in these frames will be the basis of both on-line and o�-line data analyses.

5.4 Detector

Development of the initial detector system has been the responsibility of the cur-
rent research and development programs at Caltech and MIT. Ongoing research
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Figure 12: Displacement sensitivity of the 40 meter interferometer at Caltech
in comparison to the predicted performance from the noise models.

utilizes three prototype interferometers, the 40 meter interferometer at Caltech
and the phase noise and �xed mass interferometers at MIT. These projects will
continue to pursue technological advances after the initial LIGO installation for
incorporation into future advanced interferometer designs.

At Caltech the 40 meter interferometer has been instrumental in the study of
noise and performance. Figure 12 demonstrates the comparison of the measured
sensitivity with expectation based on theory. The 40 meter interferometer is also
the testbed for veri�cation of LIGO subsystems such as the pre-stabilized laser
and prototypes of the CDS systems. The current con�guration is one of optical
recombination and will soon evolve to a recycled con�guration. A prototype
data acquisition system will be added near the end of 1996.

The phase noise interferometer at MIT is working to achieve the phase sensi-
tivity required by LIGO of less than 10�10radians=

p
Hz with a recycling power

on the order of 100 Watts. The phase noise interferometer recently achieved a
recycling gain of 450. The next step will be to convert to an Nd:YAG laser. This
interferometer is also being used to test an active vibration isolations system.

The �xed mass interferometer at MIT is being set up to perform initial tests
of the frequency-shifted, subcarrier length sensing control system. It will also
be used to develop a wavefront sensor to maintain optimal alignment in a locked
interferometer.
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6 Data Analysis

The LIGO interferometers will begin continuous collection of data at roughly the
beginning of the new millennium. Gravitational wave detection will be the core
of LIGO operations. While new and unexpected discoveries will undoubtedly be
a part of LIGO's legacy, the search for gravitational waves of a known form as
predicted by the general theory of relativity and astrophysics will be the driving
mode of data analysis in the initial phase of LIGO.

In anticipation of this phase, a great deal of intellectual energy is being
focused to understand the challenges of detecting and characterizing the data
collected by LIGO. Major sources of gravitational waves fall into four astrophys-
ically distinct categories. The implications to LIGO data analysis from each of
these categories are unique and summarized below.

6.1 Supernovae

Supernovae can potentially generate gravitational waves detectable by the initial
LIGO interferometers through several mechanisms, even in the case of spherical
collapse. The neutron star produced in a supernova is likely to be convectively
unstable and \boil" vigorously in a manner which radiates gravitationally during
the initial � 0:1 seconds of its existence [21]. It is estimated that something on
the order of 10 cycles of gravitational waves will be generated by this boiling
with a frequency of � 100 Hertz with a gravitational wave amplitude of

h ' 3� 10�22
30kpc

r
: (89)

The initial LIGO would only be able to detect such amplitudes within the local
group of galaxies, leading to event rates of roughly one every ten years.

If the supernova progenitor is rotating then the collapsing core will likely be
centrifugally attened, enabling gravitational radiation during the collapse. If
the core's angular momentum is small then the evolution is likely to be axisym-
metric and the amplitude of the gravitational waves will be quite small, possibly
having a characteristic amplitude of

hc ' 3� 10�21
30kpc

r
(90)

with a frequency between 200 and 1000 Hertz which will precede the boiling
phase by a fraction of a second. Since the number of wave cycles will be quite
small during the collapse, the initial LIGO interferometers will only be able to
observe such signals from within the local group of galaxies with event rates
comparable to those from the convective boiling.

If the angular momentum of the supernova core is large, then dynamical
and secular instabilities may force a non-axisymmetric core to form. It is con-
ceivable that the core could break up into two or more pieces. In this case the
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gravitational wave signal could be nearly as strong as in the case of a coalescing
compact binary (discussed below). If the core is centrifugally hung up with a
radius of approximately 100 kilometers, as may be the case if the progenitor core
is a white dwarf spun up by accretion, then the instability will produce a bar
or bifurcation which radiates at approximately 100 Hertz. If the excess angular
momentum goes into the production of gravitational waves, then the waveforms
will increase in frequency (chirp) with a characteristic amplitude of roughly half
that found in a neutron star - neutron star binary coalescence. However, the an-
gular momentum will probably go into the production of hydrodynamic waves,
reducing the amplitude of the gravitational waves from these events.

The other possibility in the case of large angular momentum is for the core
to become centrifugally hung up at a radius just larger than the �nal neutron
star (� 20 kilometers). Numerical simulations of this case [22] reveal that
after a short phase of emission at a frequency of approximately 1000 Hertz, the
core reaches a secular instability in which the frequency decreases to about 10
Hertz having a characteristic amplitude only slightly less than in the case of
chirp waveform from the previous case of centrifugal hang up at a radius of
approximately 100 kilometers. Fits to the numerical simulations [23] give

h+(t) = A(f)

�
1 + cos({)

2

�
cos (�(t)) (91)

h�(t) = A(f) cos({) sin (�(t)) (92)

where the amplitude A(f) is given by

A(f) = 4:6� 10�22
M2

R

�
30Mpc

r

�
B (fmax)

�
f

fmax

�2:1
s
1� f

fmax
(93)

and where M is the mass of the neutron star in units of 1:4 solar masses, R is
the radius of the neutron star in units of 10 kilometers and B(fmax) is

B (fmax) =

(�
�fmax=1756

�2:7
for �fmax < 500Hz�

�fmax=1525
�3

for �fmax > 330Hz
(94)

where

�fmax = 26:7

r
R3

M
fmax: (95)

The phase evolution for this gravitational waveform is given by

�(t) = 2�

Z
f(t)dt (96)
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where the frequency is calculated from the number of wave cycles per logarithmic
frequency

f2

_f
= �

s���� dNdlnf
���� = 0:03

�
R4

M3

�
f

B (fmax)
�

f
fmax

�4:2 �
1� f

fmax

� : (97)

This �t to the numerical calculations typically agrees to within 10% with a
maximum error of approximately 30% when f is close to fmax.

Common to all the mechanisms which produce supernovae is a weak signal
and a small number of cycles in the gravitational waves observed. Distinguish-
ing these waveforms from non-Gaussian noise in the interferometers requires
that signals from di�erent interferometers be correlated. In the event that the
signal is strong enough to be observed by both the 4 kilometer and 2 kilometer
interferometers at Hanford, then the ratio of the gravitational strain produced
in the two interferometers should be 2 : 1, increasing the con�dence that the
observation is that of a gravitational wave.

6.2 Compact Binary Sources

The inspiral and coalescence of compact binary systems composed of neutron
stars and black holes are among the most promising sources of gravitational
waves for LIGO to detect. The sensitivity of the initial LIGO interferometers
will allow a coalescing pair of neutron stars to be detected out to 20 mega-
parsecs. A pair of 10 solar mass black holes could be detected at roughly 100
megaparsecs Detection of this type of source is greatly enhanced by the fact
that the waveforms are known to a very high precision. This allows for the use
of Wiener optimal �ltering. The accuracy of the waveform templates of optimal
�ltering play a crucial role since a typical binary inspiral will advance by thou-
sands of cycles as it sweeps upward in frequency through the LIGO bandwidth.
Phase coherence must be maintained between the theoretical waveform and the
signal detected by LIGO to no less than a quarter of a cycle in order for the
optimal �ltering technique to produce a strong match. To achieve this level
of accuracy in the theoretical templates, it will be necessary to generate them
using the second post-Newtonian (2PN) waveforms [24]. The formulae for the
h� and h+ waveforms to this order are given by

h+;�(t) =
2Gm�
c2r

�
Gm!
c3

� 2
3h

H
(0)
+;� +

p
xH

( 1
2
)

+;� + xH
(1)
+;� + 3

p
xH

( 3
2
)

+;� + x2H
(2)
+;�

i
(98)

where the brackets involve a post-Newtonian expansion whose various post-
Newtonian terms are given for the plus polarization by
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and for the cross polarization by
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The notation used is the following. The post-Newtonian expansion parameter
is x = (Gm!=c3)2=3 where ! is the orbital frequency for the circular orbits,
accurate to order 2PN. The total mass is m = m1 + m2 and � = m1m2=m

2.
The constants c{ = cos { and s{ = sin { are de�ned using the angle of inclination
{ of the orbital plane with respect to the line of sight. The phase variable  is
de�ned by

 = �� 2Gm!
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�
!

!�

�
: (109)

The time dependence of the function � and its time derivative ! are given by
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where the constant �c is the phase at tc, the time of coalescence,
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and where the dimensionless time variable � is given by

�(t) =
c3�

5Gm
(tc � t) : (112)

The particular choice for !� is physically irrelevant since it relates to the de�-
nition of the origin of time in the wave zone. A convenient choice is one which
is the same for all templates and relates to the detector characteristics, such as
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the choice of !� = �fsc where fsc corresponds to the seismic cuto� frequency
for the interferometer.

The procedure for Wiener optimal �ltering in the LIGO data analysis is
to begin with the output o(t) = h(t) + n(t) from the interferometer. For any
second post-Newtonian template waveform, h2PN (t), the optimal �lter ~q(f) is
constructed by

~q(f) =
~h2PN (f)

Sn(f)
; ~h2PN (f) =

Z +1

�1

h2PN (t)e
i2�ftdt (113)

where Sn(f) is the noise spectral density de�ned as ~h
2
noise(f). The time domain

representation of the Wiener optimal �lter q(t) is then determined by the Fourier
transform

q(t) =

Z +1

�1

~q(f)e�i2�ftdt: (114)

This is then correlated to the output o(t) from the interferometer

�(t) =

Z +1

�1

o(�)q(� + t)d� (115)

which through a useful property of Fourier transforms, can be rewritten as

�(t) =

Z +1

�1

~o(f)~q�(f)ei2�ftdf: (116)

Equation 116 is the most e�cient to implement on a computer. In practice
the analysis with Wiener optimal �lters will proceed as follows. The optimal
�lter will be constructed using Equation 113 for each second post-Newtonian
waveform template by numerical means. The Fourier transform for the inter-
ferometer will also be calculated by numerical methods. Equation 116 will be
evaluated using a fast Fourier transform (FFT), and the resulting �(t) will be
compared to at threshold.

The remaining issue for data analysis of the compact binary inspiral search is
the determination of the number of waveform templates to use in the Wiener op-
timal �ltering. This has been researched extensively [25, 26]. Findings indicate
that for both the post-Newtonian and the second post-Newtonian waveforms
[27], the number of templates needed for the initial LIGO sensitivity is approx-
imated by

N ' 2:4� 105
� L
0:1

�
�1�

Mmin

0:2M�

�
�2:7

 
f̂

200Hz

!
�2:5

(117)

and for the projected advanced LIGO sensitivity, approximated by
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(118)

where L is the excepted fraction of signals lost in the analysis, Mmin is the
mass of the smaller of the binary companions, M� is one solar mass, and f̂ is
the frequency at which the interferometer is most sensitive (roughly 140 Hz for
the initial LIGO interferometers).

Based on the computational requirements of fast Fourier transforms[28], the
computing power necessary to carry out the data analysis for the compact bi-
nary inspiral search has been estimated using a single pass, non-hierarchical
scheme[26]. The CPU requirements for the initial LIGO sensitivity are

P ' 30� 109 FLOPS
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(119)

and for the projected advanced LIGO sensitivity, approximated by

P ' 400� 109 FLOPS
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: (120)

For the initial LIGO sensitivity, each detector would require 40 GFLOPS of
computing power to analyze the 5:9�105 waveform templates if a 10 percent loss
of events was acceptable, and searches were carried out only for binary systems
where the smaller companion had a mass of no less than 0:2M�. Computing
power on this scale is available today and will become more easily accessible
in the future, but this is a scale that becomes di�cult to manage in an on-line
data analysis system, especially in the early phases of observation. A balance
between reduced on-line template searches and full o�-line template search will
probably be adopted by LIGO.

6.3 Periodic (Pulsar) Sources

Rotating neutron stars which are observationally known to exist as pulsars, will
produce gravitational waves as a result of asymmetries about the axis of ro-
tation [29]. These deviations from axisymmetry could arise from accretion of
matter, solidi�cation of the crust as it enters a �nal state during formation, as
the result of \starquakes" or through complex interactions of magnetic �elds.
Gravitational waves will be produced at several frequencies. The star will radi-
ate at twice its orbital frequency (frot) as a result of the ellipticity induced by
this asymmetry. If however, the principle axis of the star's moment of inertia
tensor is misaligned with the rotation axis by a small angle �, a precession will
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Figure 13: All sky pulsar search: Dotted line represents the number of patches
needed to carry out search. The solid line shows for a given computing power,
the optimized observation time with respect to loss of signals (not shown) which
achieves the maximum signal to noise ratio.

exist, which causes the star to radiate at sideband frequencies to the rotational
frequency. This will also introduce radiation at a frequency of frot + fprec. For
typical neutron star masses the characteristic amplitude of the gravitational
waves are

hc ' 6� 10�25
�

frot

500Hz

�2�
1kpc

r

��
�e or ��prec

10�6

�
: (121)

This is an extremely weak signal. In order to detect the signal it must be
integrated for long periods of time. However, for any integration time having a
chance of detecting the signal, there will be Doppler shift e�ects on the pulsar's
gravitational wave frequencies.

There will be a gradual spin down of the radiating frequencies from both
electromagnetic and gravitational wave emissions. This process is expected to
lead to the glitches seen on a timescale of roughly once every four months,
at which time the parameters driving the gravitational wave frequencies will
change. For this reason it is very likely that integration times to enhance the
signal to noise ratio will not be longer than mean times between glitches.

The fundamental approach to analysis is to take the Fourier transform of
the interferometer output. Both of these e�ects cause the spectral power of the
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pulsar's gravitational wave signal to be spread out over adjacent bins in the
frequency representation. To correct this, each location on the sky of a speci�c
size, denoted as a \patch", must be corrected for the Earth's motion by a trans-
formation to an inertial frame of reference. The e�ects of frequency spindown
must also be taken into account by a similar transformation. The procedure
for determining the number of patches (inclusive of the spindown) needed to
accurately detect the pulsar has been determined by a method analogous to the
metric method used to determine the number of binary inspiral templates [30].
The number is enormous for an \all sky search." For frequencies below 200Hz
and for observation times less than 10 days it is approximated by

N ' 4� 105
�
fmax

200Hz

�2�
40years

�

�3�
0:3

Mmax
�

�2�
Tobs

1 day

�5

(122)

where fmax is the maximum gravitational wave frequency searched, � is the
spindown rate for the pulsar, Mmax

�
is the maximum match between the signal

and the patch and Tobs is the observation time in days.
Applying the computational characteristics of the fast Fourier transform to

this problem, the computing power required to do the all sky search with a high
assurance of detection is given by

P ' 215N
�
fmax

1kHz

�0@1 + ln
�
fmax

1kHz

��
Tobs

106 sec

�
31

1
A (123)

whereN is the number of patches from Equation 122, and Tobs is the observation
time in seconds. This is not the most e�cient use of computing power. An
optimization, which gives the best signal to noise, between the observational
time required and the matching between the patches and the pulsar signal for
a speci�ed computing power is shown by the solid curve of Figure 13.

For signal integration times of any length, this becomes a many teraop
computing problem. While teraop computers are on the horizon, they are not
in the scope of on-line analysis plans for the initial LIGO detectors.

6.4 Stochastic Background

Stochastic background searches will be used to place upper limits on the energy
density of stochastic gravitational waves [31, 32]. This background gravitational
signal is analogous to the 3� Kelvin microwave background in the electromag-
netic spectrum. The precise de�nition of this energy density in terms of the
critical energy density needed to close the universe �critical is


GW (f) =
1

�critical

d�GW

d ln f
: (124)
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Sources of the stochastic background include the random superposition of
gravitational waves from binary star systems, decaying cosmic strings, �rst-order
phase transitions in the early Universe, and parametric ampli�cation of quantum
mechanical zero-point uctuations in the metric tensor during ination. The
predicted strengths of all of these sources is highly uncertain, and given by the
characteristic amplitude with Hubble constant H� by

~hc(f) = 1:3� 10�20
�

H�

100km=s=Mpc

�p

GW

�
100Hz

f

�
: (125)

Placing upper limits on the energy density of the stochastic background or
more importantly, the detection of the stochastic background, could introduce a
wealth of information to better our understanding of the Universe. LIGO with
its two detectors in Washington and Louisiana very nearly aligned provides for
the optimal orientation of two detectors for stochastic background searches. The
proposed VIRGO - GEO orientation minimizes that detector pair's sensitivity
to stochastic background searches amplifying the role that LIGO will play in
this type of signal search.

The stochastic background signal will be buried in the noise sources of a
single detector and cannot be detected unless the signal strength is signi�cantly
larger than currently predicted. However, for two detectors with no correlated
sources of noise, the only correlated uctuations in the detector pair will be
those due to stochastic gravitational waves. Therefore the detection scenario
for the stochastic background involves a properly weighted correlation of the
strain outputs from two detectors having uncorrelated noise sources. The proper
weighting is given by the optimal �lter

�
S

N

�2

=
9H4

�

50�4
�

Z
1

0

2(f)
2
GW (f)

f6Sn1(f)Sn2(f)
df (126)

where Sn1(f) and Sn2(f) are the noise power spectral densities of each of the
detectors, � is the integration time, H� is the Hubble constant in units of sec�1

and (f) is the overlap reduction function given by

(f) =
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and is a function of the separation �~x between the two detectors and the re-
sponse F+;�

i of the detectors to the gravitational wave polarizations.

F
+;�
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1

2

�
X̂a
i X̂

b
i � Ŷ a

i Ŷ
b
i

�
e
+;�
ab (
̂) (128)

where 
̂ is the unit vector on the two-sphere, Xa
i and Y a

i are the directions of

the detector i arms and e+;�ab (
̂) are the polarization tensors.
This dependency is basically due to the fact that the arms will on average

move strongly in phase only for gravitational waves having wavelengths longer
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than twice the distance between the detector pair. For the Hanford - Livingston
separation of 3030 kilometers, this corresponds to stochastic signals of frequency
less than approximately 50 Hz. Even though the optimal �lter for stochastic
signal detection peaks strongly below this frequency, the full spectral range of
the interferometers is expected to be used in the search and non-trivial weighting
carried out to at least 1kHz.

In order to properly carry out the two detector signal correlation using the
optimal �lter, the pre-whitened signals from the two detectors will need to be
unwhitened to bring the two signals back into the proper phase relationships for
the gravitational wave, unless the pre-whitening �lters from the two detectors
are identical in their phase response over the frequencies of interest. This will
require that the full amplitude and phase characteristics of the pre-whitening
�lters be recorded and available to the stochastic data analysis. Additionally,
since the optimal �lter is peaked for frequencies below 50 Hz, it is important
that the pre-whitening �lters do not zero out the strain signal at these lower
frequencies. In fact, the dependency on the frequency in the signal to noise
ratio is proportional to f�3. The signal to noise ratio also increases with time.
Searches will most likely utilize months if not years of data. However, this
type of search does not require the vast computer power of the periodic search
since the strain data does not require doppler shifts and data can be handled in
smaller sections.

Intrasite searches for stochastic signals such as with the two interferometers
at Hanford are not expected to be straight forward to implement due to the
strong correlations in the common noise sources such as power lines, gas col-
umn density uctuations in the beam tube, and seismic noise. Even if these
correlated noises were recorded, there would be no way to distinguish them
from the stochastic background signals. However, since the two detectors are
co-located, the search would encompass lower frequency stochastic gravitational
waves where the optimal �lter is more strongly peaked for the initial LIGO sen-
sitivity.

6.5 Advanced Analysis Methods

The methods described in the searches for expected sources of gravitational
waves are considered the \baseline" techniques to be used by LIGO. Other
methods for data analysis are being considered and hold much promise for
faster on-line analysis and the search for gravitational waves from sources with
unknown or poorly known waveforms. Among these are the Gabor and wavelet
transforms[33] in which the analysis is carried out in a \time + frequency" rep-
resentation. Other methods include adaptive line enhancement where the �lter
is self adjusting based on the input data sequence[34]. In all of these methods,
questions of robustness have caused them to remain in the background, while
the \brute-force" methods are being planned for use in the initial LIGO data
analysis. Still, they hold great promise and deserve consideration.
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