\mathcal{F} -statistic bias due to noise-estimator

Reinhard Prix

LIGO-T1100551-v1 July 2006

1 Overview

- As reported by Iraj (see here) there appears to be a positive bias in the expectation-value of the \mathcal{F} -statistic in the pure-noise case, of about 1-2% with a running-median size of 50. A similar effect has been reported also by Greg in the context of StackSlide (see here)
- Here we investigate the quantitative bias expected from the finitesample estimator of the power-spectral density, namely the bias due to the fact that in general

$$E\left[\frac{1}{x}\right] \neq \frac{1}{E[x]}.\tag{1}$$

• Note: the effect investigated here has *nothing* to do with using the median versus the mean. In fact we'll be assuming that we use the *mean* to estimate the power.

2 \mathcal{F} -statistic of pure noise

Schematically, the \mathcal{F} -statistic in the noise-only case can be written as

$$2\mathcal{F} = \sum_{\mu=1}^{4} \frac{n_{\mu}^{2}}{E[n_{\mu}^{2}]}, \qquad (2)$$

where n_{μ} are 4 Gaussian random variables with zero-mean and variance σ^2 , i.e. $E[n_{\mu}] = 0$ and $E[n_{\mu}^2] = \sigma^2$. It is obvious that in this case we have $E[2\mathcal{F}] = 4$.

In order to compute the \mathcal{F} -statistic, we therefore need to compute quantities the form

$$\zeta \equiv \frac{n_{\mu}^2}{E[n^2]} \,. \tag{3}$$

In practice, we use a finite-sample estimator for the variance $E[n^2]$, and for the sake of simplicity here we use the mean (instead of the median), namely

$$P_N \equiv \left\langle n^2 \right\rangle_N = \frac{1}{N} \sum_{i=1}^N n_i^2 \,, \tag{4}$$

where the n_i are different (uncorreleated) noise-realizations. It is obvious that P_N is an *unbiased* estimator for σ^2 , namely

$$E[P_N] = \sigma^2 = E[n^2]. \tag{5}$$

It is straightforward to show for the Gaussian variables n that

$$E[n^4] = 3\sigma^4, (6)$$

and therefore we find

$$E[P_N^2] = \frac{1}{N^2} \sum_{i,j=1}^N E[n_i^2 n_j^2]$$

$$= \frac{1}{N^2} \left(\sum_{i=j}^N E[n^4] + \sum_{i\neq j}^N E[n^2]^2 \right)$$

$$= \frac{1}{N^2} \left(3N \sigma^4 + N(N-1)\sigma^4 \right)$$

$$= \sigma^4 \left(1 + \frac{2}{N} \right). \tag{7}$$

For $N \gg 1$ the noise-floor estimator P_N will be well approximated (centrallimit) by a Gaussian distribution with mean μ_N and variance σ_N^2 given by

$$\mu_N = \sigma^2$$
, and $\sigma_N^2 = \frac{2\sigma^4}{N}$,. (8)

3 The bias in the inverse noise-floor estimator

Although P_N is an unbiased estimator for σ^2 , the expression for the \mathcal{F} -statistic (2) involves (four) terms of the form

$$\zeta_N \equiv \frac{n_\mu^2}{P_N} \,. \tag{9}$$

So the question is: given a Gaussian variable $y \equiv P_N$ with mean μ and variance σ^2 , what is the expectation-value of z = 1/y? (Note that in practice there are most likely also correlations between n^2 and P_N , as we will be using 32 frequency-bins to compute the nominator, and 50 frequency-bins to estimate the noise-floor in the denominator. However, for very large N this effect should also vanish, and we neglect it here for "first-order simplicity" of the argument).

The Gaussian distribution of y is

$$pdf[y] = f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2},$$
(10)

and the distribution of z = 1/y can be found as

$$pdf[z] = g(z) = \frac{1}{z^2} f\left(\frac{1}{z}\right). \tag{11}$$

What we want to estimate is $\bar{z} \equiv E[1/y]$, which is given by

$$\bar{z} = \int_{-\infty}^{\infty} z \, g(z) \, dz = \int_{-\infty}^{\infty} \frac{1}{z} \, f\left(\frac{1}{z}\right) \, dz$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \frac{1}{z} e^{-\left(\frac{1}{z}-\mu\right)^2/2\sigma^2} \, dz \,. \tag{12}$$

Introducing a new dimensionless integration-variable ε as

$$\frac{1}{z} = \mu(1 - \varepsilon), \tag{13}$$

which gives

$$\frac{dz}{z} = \frac{d\varepsilon}{1 - \varepsilon} \,, \tag{14}$$

the integral (12) now reads as

$$\bar{z} = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \frac{1}{1-\varepsilon} \exp\left[-\frac{\varepsilon^2}{2(\sigma/\mu)^2}\right] d\varepsilon.$$
 (15)

If the Gaussian distribution of y has a maximum well-separated from zero, i.e. $\mu \gg \sigma$, then the exponent will vanish rapidly for $\varepsilon \gtrsim (\sigma/\mu)^2$, and we can therefore assume $\varepsilon \ll 1$ and expand

$$\bar{z} = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \left(1 + \varepsilon + \varepsilon^2 + \dots\right) \exp\left[-\frac{\varepsilon^2}{2(\sigma/\mu)^2}\right] d\varepsilon$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \left(\sqrt{2\pi}\frac{\sigma}{\mu} + 0 + \sqrt{2\pi}\left(\frac{\sigma}{\mu}\right)^3 + \dots\right)$$

$$= \frac{1}{\mu} \left(1 + \left(\frac{\sigma}{\mu}\right)^2 + \dots\right). \tag{16}$$

This shows there is a *positive* bias of E[1/y] with respect to 1/E[y], which to first order is given by $(\sigma/\mu)^2$ in terms of the mean and variance of the underlying Gaussian distribution of y.

Applying this on (9) and assuming (for simplicity) the nominator and denominator to be independent, one gets

$$E[\zeta_N] = E[n^2] E\left[\frac{1}{P_N}\right] = \sigma^2 \frac{1}{\mu_N} \left(1 + \left(\frac{\sigma_N}{\mu_N}\right)^2 + \dots\right) = 1 + \frac{2}{N} + \dots$$
 (17)

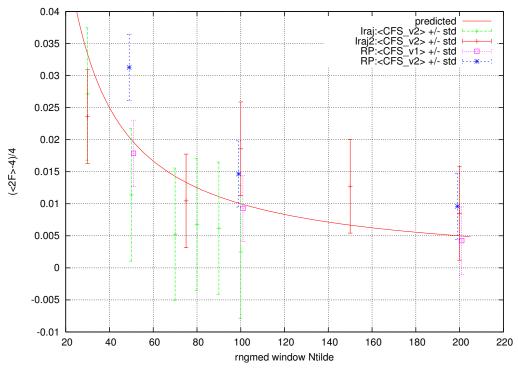
There is a bias of +2/N, where N is the number of independent samples used to compute the mean of n^2 . When using a window \tilde{N} in the frequency-domain, this corresponds to $N=2\tilde{N}$, as each frequency-bin contains two independent samples.

Using the default windowsize of $\tilde{N} = 50$, one would find a bias of

$$\frac{2}{N} = \frac{2}{2 \times 50} \approx 0.02. \tag{18}$$

4 Comparison to measurement

Taking measured results for $\langle 2F \rangle$ as a function of running-median windowsize \tilde{N} and comparing this to the prediction (17):



The error-bars on the measurements are $\pm \sigma_{\langle \mathcal{F} \rangle}$ of the F-average, given by

$$\sigma_{\langle \mathcal{F} \rangle} = \sqrt{\frac{8}{n_0}} \,, \tag{19}$$

where n_0 is the number of trials used to compute $\langle F \rangle$. Iraj's measurements used T = 40 hours (and L1), my measurements were for T = 50 hours and H1 ($T_{\text{SFT}} = 30 \text{ mins}$).

5 Discussion

- My measurements using CFSv1 (300,000 independent trials) seem to agree well with the prediction, but the CFSv2 results appear to have a slight additional bias.
 - Could that come from the additional noise-weighing in the antennapattern functions??
- Why was the CFSv1-bias not seen in an earlier check discussed link?