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1 Definitions

By atom interferometer we mean a Mach-Zehnder interferometer where free-falling atoms initially
in the ground state first evolve into a superposition of two states (associated with the two hyperfine
levels of the ground state of alkali atoms) after interaction with two counter-propagating 7/2 laser
pulses. The two lasers are shifted in frequency to compensate the hyperfine splitting and the Doppler
effect due to the motion of the atoms. The pulse duration 7 /2 refers to the Rabi oscillation period and
means that the resulting superposition is balanced with respect to the two states. Since momentum
is transferred during this interaction depending on the internal state of the atom, the superposition
leads to a spatial splitting of the atom path so that the first interaction with the laser essentially acts
as a 50/50 splitter of the atom beam. After a time 7" another laser-atom interaction occurs. This time
it is a 7 pulse that interacts with both atom paths. It inverts the momenta of the atom such that the
two paths converge again to one point and therefore one can think of this interaction as reflection
from a mirror. After time 7" at the point where the two paths converge, a final /2 pulse occurs that
lets the two atom paths interfere with each other. Atoms are then counted in the two outgoing paths.

By atom GW detector we mean two atom interferometers separated by a large distance L that
both interact with the same lasers. In this case, the system is characterized by three time scales,
the light propagation time L/c, the interaction time 7, which is either a quarter or half of the Rabi
oscillation period, and the fall time 7" of atoms between interactions with the lasers.

2 The response of atom interferometers to GWs

Each atom interferometer by itself has already some sensitivity to GWs, but we can neglect this since
the size of the Mach-Zehnder formed by the atom paths is small. To understand how the atom GW
detector responds to GWs, we need to know that the lasers imprint their phase on the atom beams
at each laser-atom interaction. Since a GW changes the distance between the two interferometers,
the relative laser phase imprinted on the atoms at the two interferometers will be modulated at the
GW frequency. This means that the two atom interferometers take over the part of the test masses
inside a LIGO arm and the GW response in the long-wavelength limit with respect to the relative

laser phase is simply
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where wy is the laser frequency, and €2 the GW frequency. A complete calculation of the atom
interferometer response to GWs and other relativistic effects can be found in [1]. Even though the
signal is ultimately given by atom numbers counted in each atom interferometer, it is convenient to
express the GW response with respect to the laser phase. This will become clear when we calculate
some contributions to the instrumental noise.

The analogy between atom interferometers and LIGO test masses is not perfect since two atom
interferometers measure the light phase at two points whereas in LIGO light is only detected at the
dark port. This is also one reason why atom GW detectors can potentially have suppressed seismic
noise as we will see in the next section.



3 Atom GW detector noise coming from the lasers

We do not want to give a full account of instrumental noise sources. A fairly complete list (more
complete than I could have given) can be found in [2]. In this article we only want to focus on noise
contributions that help us gaining some intuitive understanding of atom GW detectors. The first
noise contribution that we consider is the laser phase noise ¢,(£2). Since both atom interferometers
interact with the same lasers, the noise in the relative phase between the two interferometers is given
by
QL
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where the fraction accounts for a partial correlation of laser-phase noise at the two atom interferom-
eters. We can write the respective GW sensitivity
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The last expression is simply twice the relative frequency noise of the laser. Here we can already see
why it is convenient to refer noise and GW response to the laser phase. It does not matter how atoms
are counted, whether the atom interferometer is operated as a Mach-Zehnder or in another configu-
ration, or how many laser photons interact with each atom per pulse. The laser-phase-noise related
sensitivity of a two-atom-interferometer GW detector with no sophisticated laser interferometry will
always be governed by this equation. This also tells us that this type of atom GW detector would
not work since relative laser frequency noise cannot be made many orders of magnitude smaller
than a currently typical value of 1071/ vHz. Note that it is really the frequency stability of the
oscillator used for the AOM to produce a second laser with shifted frequency that matters here, not
the frequency noise of the laser itself. This is because of how the two counter-propagating lasers at
slightly different frequencies imprint an effective phase on the atoms.

The second noise contribution that we want to discuss is the seismic noise. We imagine that
the lasers themselves are shaking with amplitude £(£2) along the beam direction, or maybe that the
lasers are at some point reflected from a mirror that shakes with this amplitude. In either case, it is
easy to see that the resulting phase noise of the laser is
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(or twice as high in the case of a shaking mirror). Again, the equation can look different when the
atom GW detector has more than two atom interferometers or a more complex optical system. The
first fraction is the LIGO type response to seismic noise, and we find that the only type of seismic-
noise suppression comes from the partial correlation of seismic noise at the two interferometers.
Note that this correlation is produced by the light field and not the seismic field. The free fall of the
atoms is one condition why this high degree of correlation can form. It is much harder to establish a
high displacement correlation between suspended mirrors. The sensitivity to GW is given by
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In terms of GW sensitivity, both noise contributions, seismic and laser-phase noise, were found to be
independent of the distance L between the two atom interferometers. We will see in the next section
that this is not the case for noise coming from the atoms.



4 Atom GW detector noise coming from the atoms

As an example, we will calculate the sensitivity curve with respect to atom shot noise. The shot
noise of the atom phase is simply
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where 7 is the mean number of atoms counted per second. The remaining problem is to express
this equation as equivalent laser phase noise, which requires the transfer function from laser phase
to atom phase. The full calculation for the Mach-Zehnder interferometer is given in [3]. Here we
will simplify the problem by assuming that the interaction between atoms and laser is instantaneous
(i.e. that the Rabi frequency is infinite). The result can be applied to ground-based detectors that
are much smaller than the length of the GWs. As explained in the introduction, the laser phase ¢ is
imprinted onto the atoms at three different times, ¢, £ 47" and ¢t +27'. The laser phase is amplified by
the number /V of photons that interact with each atom at each pulse. One can also show that the laser
phase obtains a minus sign at the 7 pulses and a plus sign at the 7/2 pulses. Therefore, assuming
instantaneous interaction we obtain
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Modelling more realistic light-atom interactions, the phase terms need to be substituted by some
integral over the interaction time that will also depend on the shape of the laser pulse since the Rabi
frequency is not a constant (Rabi frequency depends on laser amplitude, which changes over the
duration of the pulse).

Transforming the last equation into frequency domain, we obtain the following absolute value
of the transfer function from laser to atom phase

T(2) = 4N sin*(QT/2) ()
and the laser-phase equivalent atom shot noise is given by
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Finally we can write the GW sensitivity as
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Just to emphasize this once again, all sensitivity curves calculated in this article are only valid in the
long-wavelength limit. The full expressions valid for detectors of arbitrary size can be found in the
cited papers.
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