

A Modelled Cross-Correlation Search for Gravitational Waves from Scorpius X-1

John T. Whelan

Center for Computational Relativity & Gravitation Rochester Institute of Technology, Rochester, NY, USA; john.whelan@astro.rit.edu

Abstract

The low-mass X-ray binary (LMXB) Scorpius X-1 (Sco X-1) is a promising source of gravitational waves in the advanced detector era. A variety of methods have been used or proposed to perform the directed search for gravitational waves from a binary source in a known sky location with unknown frequency and residual uncertainty in binary orbital parameters. One of these is modification of the cross-correlation method used in the stochastic search which takes into account the signal model of a rotating neutron star to allow cross-correlation of data from different times. By varying the maximum allowed time lag between cross-correlated segments, one can tune this semicoherent search and strike a balance between sensitivity and computing cost.

Gravitational Waves from LMXBs

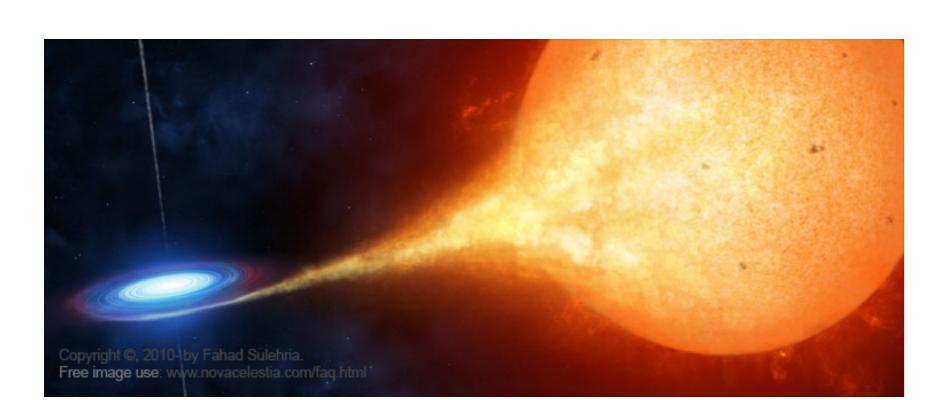


Figure 1: Artist's impression of a low-mass X-ray binary. From Astronomical Illustrations and Space Art, by Fahad Sulehria, http://www.novacelestia.com/

A low-mass X-ray binary is a binary of a compact object (neutron star or black hole) & a companion star. If the CO is a NS, accretion from the companion can produce a hot spot & power GW emission from the non-axisymmetric NS. If GW spindown balances accretion spinup, GW strength can be estimated from X-ray flux, and GW freq \approx constant [1]. Sco X-1, the brightest LMXB, is thought to be a $1.4M_{\odot}$ NS + $0.42M_{\odot}$ companion[2]. Proposed & applied search methods include a fully coherent search over a small amount of data [3], an unmodelled search for a monochromatic stochastic signal [4], a search for a pattern of sidebands arising from the Doppler modulation of the signal by the binary orbit [5], and the modelled cross-correlation search described here[6].

Cross-Correlation Method

- Divide data into segments of length $T_{\rm sft}$ & take "short Fourier transform" (SFT) $\tilde{x}_I(f)$.
- Label segments by I, J, \ldots (I & J can be same or different times or detectors)
- Label pairs by α, β, \ldots
- Use CW signal model ($\mathcal{A}_{+} = \frac{1+\cos^{2}\iota}{2}$; $\mathcal{A}_{\times} = \cos\iota$) $h(t) = h_{0} \left[\mathcal{A}_{+} \cos\Phi(\tau(t)) F_{+} + \mathcal{A}_{\times} \sin\Phi(\tau(t)) F_{\times} \right]$
- ullet expected cross-correlation btwn SFTs I & J

$$\begin{split} E\left[\tilde{x}_I^*(f_{k_I})\,\tilde{x}_J(f_{k_J})\right] &= \tilde{h}_I^*(f_{k_I})\,\tilde{h}_J(f_{k_J}) \\ &= h_0^2\,\tilde{\mathcal{G}}_{IJ}\,\delta_{T_{\mathsf{sft}}}(f_{k_I}-f_I)\,\delta_{T_{\mathsf{sft}}}(f_{k_J}-f_J) \end{split}$$

- f_I is signal freq @ time T_I Doppler shifted for detector I
- $\delta_{T_{
 m sft}}(f-f')=\int_{-T_{
 m sft}/2}^{T_{
 m sft}/2}e^{i2\pi(f-f')t}\,dt$ so $\delta_{T_{
 m sft}}(0)=T_{
 m sft}$.
- ullet Construct $\mathcal{Y}_{IJ}=rac{ ilde{x}_I^*(f_{ ilde{k}_I}) ilde{x}_J(f_{ ilde{k}_J})}{(T_{ exttt{sft}})^2}$ (where $f_{ ilde{k}_I}pprox f_I$) s.t.

$$E[\mathcal{Y}_{\alpha}] pprox h_0^2 \tilde{\mathcal{G}}_{\alpha} \quad \operatorname{Var}[\mathcal{Y}_{IJ}] pprox \sigma_{IJ}^2 = rac{S_I(f_0) S_J(f_0)}{4(T_{\mathsf{eft}})^2}$$

• Optimally combine into $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^* \mathcal{Y}_{\alpha}^*)$ w/ $u_{\alpha} \propto \frac{\tilde{\mathcal{G}}_{\alpha}^*}{\sigma_{\alpha}^2}$ so $E\left[\rho\right] = h_0^2 \sqrt{2 \sum_{\alpha} \frac{|\tilde{\mathcal{G}}_{\alpha}|^2}{\sigma_{\alpha}^2}}$ & $Var[\rho] = 1$ Computational considerations limit coherent integration time. Can make tunable semi-coherent search by restricting which SET pairs α are in

Computational considerations limit coherent integration time. Can make tunable semi-coherent search by restricting which SFT pairs α are included in $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^* \mathcal{Y}_{\alpha}^*)$ E.g., only include pairs where $|T_I - T_J| \equiv |T_{\alpha}| \leq T_{\text{max}}$

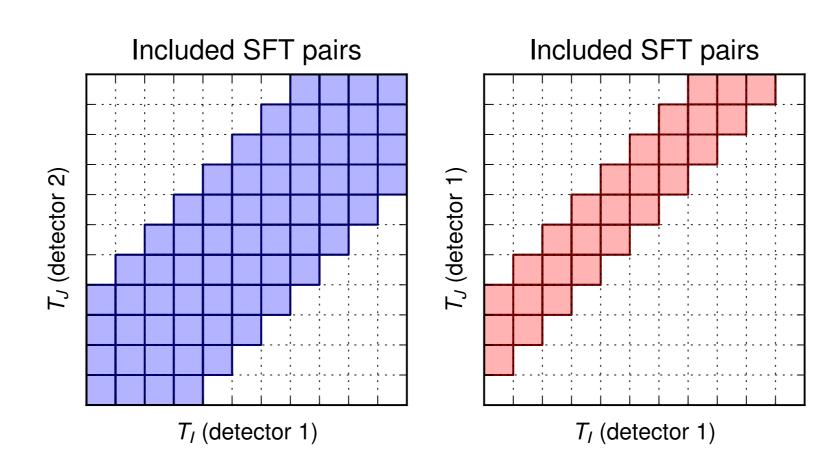


Figure 2: SFT pairs for inclusion in sliding cross-correlation search. Left: data from different detectors at same or different times. Right: data from same detector at different times. In this illustrative example, $T_{\text{max}} = 3T_{\text{sft}}$.

Parameter Space Metric

Consider dependence of ρ on parameters $\lambda \equiv \{\lambda_i\}$. Can define Parameter space metric via

$$\frac{E[\rho] - E[\rho^{\mathsf{true}}]}{E[\rho^{\mathsf{true}}]} = -g_{ij}(\Delta \lambda^i)(\Delta \lambda^j) + \mathcal{O}([\Delta \lambda]^3)$$

$$g_{ij} = -\frac{1}{2} \frac{E[\rho_{,ij}]|_{\boldsymbol{\lambda} = \boldsymbol{\lambda}_{\mathsf{true}}}}{E[-\mathsf{true}]}$$

Assume dominant contribution to $E[\rho_{,ij}]$ is from variation of $\Delta\Phi_{IJ}=\Phi_I-\Phi_J$; get phase metric

$$g_{ij} = \frac{1}{2} \frac{\sum_{\alpha} \Delta \Phi_{\alpha,i} \Delta \Phi_{\alpha,j} |\tilde{\mathcal{G}}_{\alpha}|^2 / \sigma_{\alpha}^2}{\sum_{\beta} |\tilde{\mathcal{G}}_{\beta}|^2 / \sigma_{\beta}^2} \equiv \frac{1}{2} \left\langle \Delta \Phi_{\alpha,i} \Delta \Phi_{\alpha,j} \right\rangle_{\alpha}$$

Note $\langle \ \rangle_{\alpha}$ is average over pairs weighted by $\frac{|\mathcal{G}_{\alpha}|^2}{\sigma_{\alpha}^2}$; ignoring weighting factor gives usual metric [7]

$$\langle \Phi_{I,i} \Phi_{I,j} \rangle_I - \langle \Phi_{I,i} \rangle_I \langle \Phi_{J,j} \rangle_J$$

Define $T_{IJ} = T_I - T_J \equiv T_{\alpha}$ as time offset btwn SFTs; T_{α}^{av} is average time. For each detector pair, avg over pairs is avg over $T_{\alpha} \& T_{\alpha}^{\text{av}}$. If we assume the avg over T_{α}^{av} evenly samples orbital phase, the metric in $\{f_0, a_p, \widetilde{T}\}$ space is

$$\mathbf{g} = \begin{pmatrix} 2\pi^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \langle \mathbf{T}_{\alpha}^{2} \rangle_{\mathbf{T}_{\alpha}}$$

$$+ \begin{pmatrix} \pi^{2} a_{p}^{2} & \pi^{2} f_{0} a_{p} & 0 \\ \pi^{2} f_{0} a_{p} & \pi^{2} f_{0}^{2} & 0 \\ 0 & 0 & 4\pi^{4} f_{0}^{2} a_{p}^{2} / P_{\mathsf{orb}}^{2} \end{pmatrix} \langle \sin^{2} \frac{\pi \mathbf{T}_{\alpha}}{P_{\mathsf{orb}}} \rangle_{\mathbf{T}_{\alpha}}$$

Since $\langle T_{\alpha}^2 \rangle_{T_{\alpha}} \gg a_p^2 \left\langle \sin^2 \frac{\pi T_{\alpha}}{P_{\text{orb}}} \right\rangle_{T_{\alpha}}$, metric approximately diagonal. Using this metric to place templates gives template count illustrated in Fig. 3.

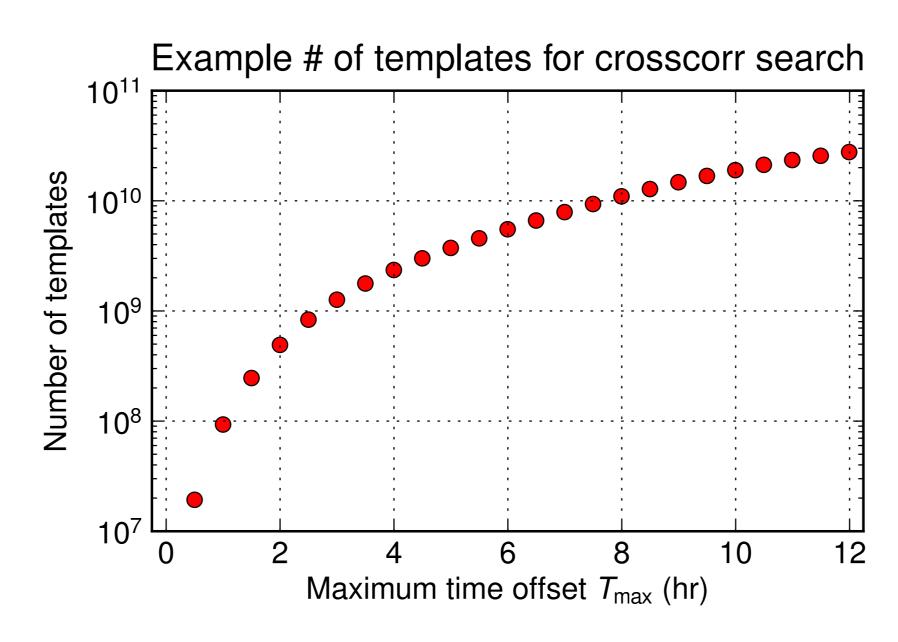


Figure 3: Illustration of dependence of template count on T_{max} ; don't read too much into absolute numbers

Sensitivity Estimates

Search is sensitive to signal of amplitude

$$h_0 = \left(\frac{\mathcal{S}^2}{\sum_{\alpha} |\tilde{\mathcal{G}}_{\alpha}|^2/\sigma_{\alpha}^2}\right)^2$$

where \mathcal{S} is a statistical factor. $\tilde{\mathcal{G}}_{\alpha}$ depends on (unknown) spin orientation angles ι & ψ ; standard approach is to average value of $\tilde{\mathcal{G}}_{\alpha}$ over $\cos \iota$ & ψ . The ψ effect is small after average over sidereal time. The ι effect means actually

$$E\left[\rho\right] \approx h_0^2 \frac{\mathcal{A}_+^2 + \mathcal{A}_\times^2}{2} \sqrt{2 \sum_{\alpha} |\tilde{\mathcal{G}}_{\alpha}|^2 / \sigma_{\alpha}^2}$$

Net effect is to change statistical factor \mathcal{S} ; for 10% false-alarm & -dismissal, h_0 sensitivity is a factor of 1.4 worse. In Fig. 4 we illustrate the dependence of search sensitivity on the maximum allowed time offset $T_{\rm max}$

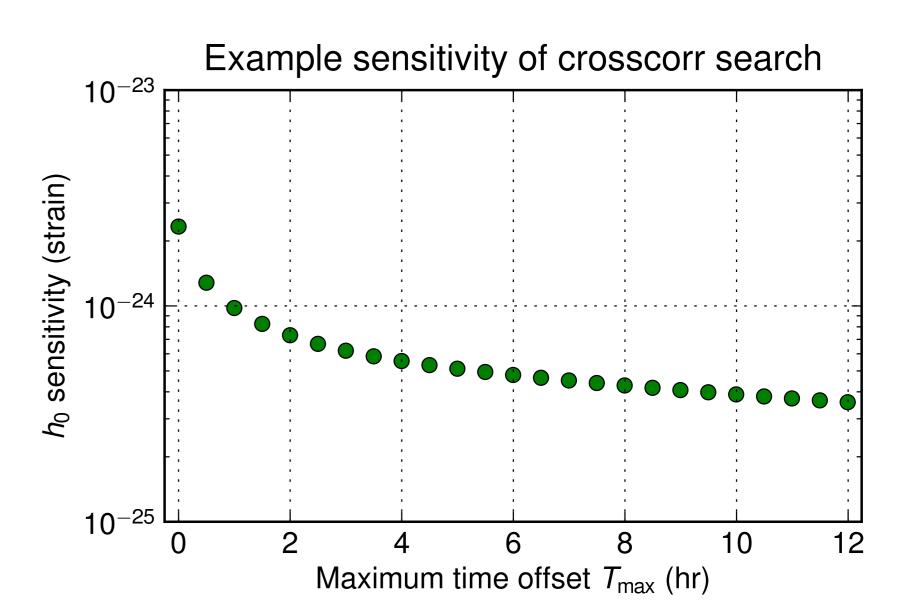


Figure 4: Illustration of dependence of template count on T_{max} ; don't read too much into absolute numbers. note that the $T_{max} = 0$ measurement is effectively the directed stochastic "radiometer" search.

As an illustration of the sensitivity of a practical search, we show in Fig. 5 the sensitivity with one year of data, using $T_{\rm max}=6\,{\rm hr}$.

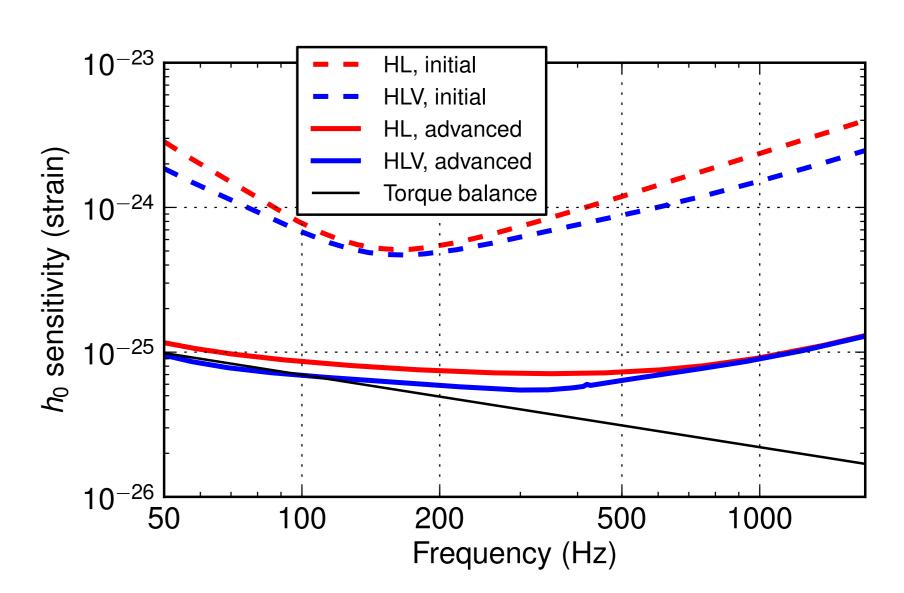


Figure 5: Sensitivity of a cross-correlation search with one year of LIGO and LIGO/Virgo design-sensitivity data, assuming 10% false-alarm &dismissal, with $T_{max} = 6 \text{ hr}$.

References

[1] Bildsten, *ApJL* **501**, L89 (1998)

[2] Steeghs & Casares *ApJ* **568**, 273 (2002)

[3] LSC, *PRD* **76**, 082001 (2007)

[4] Ballmer, *CQG* **23**, S179 (2006)

LSC, *PRD* **76**, 082003 (2007)

[5] Messenger & Woan, *CQG* 24, S469 (2007)[6] Dhurandhar et al, *PRD* 77, 082001 (2008)

[7] Pletsch, *PRD* **82**, 042002 (2010)