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Motivation

More SNR at lower frequencies:

Better matched filtering

Intermediate mass black holes: possible discovery or exclusion

Possibility of interesting pulsars

Low frequencies have interesting scientific targets 

Longer lead time for EM triggers
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Past Newtonian Noise Estimates

Advanced LIGO and 3rd Generation Strain Curves

Advanced LIGO
3G LIGO
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Past Newtonian Noise Estimates

Saulson, 1984, Average Underground Site 

Advanced LIGO
3G LIGO
Saulson
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Past Newtonian Noise Estimates
Hughes and Thorne, 1998, Seismic,    = 0.6 β

Advanced LIGO
3G LIGO
Saulson
Hughes and Thorne
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Past Newtonian Noise Estimates
Creighton, 2008, Infrasonic Atmospheric, 75% Level

Advanced LIGO
3G LIGO
Saulson
Hughes and Thorne
Creighton, infrasonic 
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Advanced LIGO
3G LIGO
Saulson
Hughes and Thorne
Creighton, infrasonic 
Creighton, temp. pert.

Past Newtonian Noise Estimates
Creighton, 2008, Temperature Perturbations, 

Smooth Streamlines
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Past Newtonian Noise Estimates

Advanced LIGO
3G LIGO
Saulson
Hughes and Thorne
Creighton, infrasonic 
Creighton, temp. pert.
LIGO 90% seismic

LIGO 90% Seismic, Measured 2011 
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Simulation of Subtraction Ability

Simulate seismic fields

Need time series, and correlation between many points
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Simulation of Subtraction Ability

Simulate seismic fields

Need time series, and correlation between many points

Calculate resultant Newtonian noise

δ�aNN =
δ �F

m
= G ρ0

�
dS

ξvert
r2

r̂Along arm cavity axis:
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Simulation of Subtraction Ability

Simulate seismic fields

Need time series, and correlation between many points

Calculate resultant Newtonian noise

Use simulated Newtonian noise models for testing, optimizing:

Array configuration

Filtering methods

Along arm cavity axis: δ�aNN =
δ �F

m
= G ρ0

�
dS

ξvert
r2
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Simulated Seismic Fields

Plane waves describe seismic field 

Implications if we're wrong:
Complex fields are hard to monitor

Most sources are distant
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Simulated Seismic Fields

No body waves
Assume body wave amplitudes are much smaller than 
         surface wave amplitudes

Plane waves describe seismic field 

Implications if we're wrong:
Complex fields are hard to monitor

Most sources are distant
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Simulated Seismic Fields

No body waves
Assume body wave amplitudes are much smaller than 
         surface wave amplitudes
Implications if we're wrong:

Have to monitor seismic fields beneath the surface
May need to monitor larger radius around test mass

Plane waves describe seismic field 

Implications if we're wrong:
Complex fields are hard to monitor

Most sources are distant
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Simulated Seismic Fields

No scattering of seismic waves
Assume scattering amplitudes << 1
Implications if we're wrong:

Many different wavelengths - hard to monitor

No body waves
Assume body wave amplitudes are much smaller than 
         surface wave amplitudes
Implications if we're wrong:

Have to monitor seismic fields beneath the surface
May need to monitor larger radius around test mass

Plane waves describe seismic field 

Implications if we're wrong:
Complex fields are hard to monitor

Most sources are distant
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√
R

Optimal Seismic Arrays

Define the subtraction factor at a single frequency
How to:

Number of sensors

Sensor layout
Array size √

R =

�
SNNSub

SNNRaw
Frequency

St
ra

in Raw

Subtracted

Optimize subtraction factor          by changing: 
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Seismometers

Optimal Seismic Arrays

Number of sensors is important
Extent / size of array is important
Specific layout is much less important

Main requirement:  "many close, some far"

Results:

Optimize subtraction factor          by changing: 
√
R

Define the subtraction factor at a single frequency
How to:

Number of sensors

Sensor layout
Array size

-10
Along Beam Axis [m]

0

-10

0

10

10
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Optimal Seismic Arrays

For 10 Hz optimized array, can achieve 
 (theoretical) subtraction factor of ~1e-6 with 10 sensors

Number of sensors is important
Extent / size of array is important
Specific layout is much less important

Main requirement:  "many close, some far"

Results:

Optimize subtraction factor          by changing: 
√
R

Define the subtraction factor at a single frequency
How to:

Number of sensors

Sensor layout
Array size

10−8

10−6

10−4

10−2

100 101 102
Frequency [Hz]

√
R
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Subtraction of Simulated Noise

3G
(simulated)

Comparing
Online feed forward cancellation

Offline Wiener filter cancellation

Online, then offline later

We think we can 
suppress 
Newtonian noise for 
Advanced LIGO and 
3G detectors

Take-home message:
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Actual Measurements

Installed: April 2012
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Actual Measurements

Installed: April 2012
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Actual Measurements

Installed: April 2012
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Spiral Layout - 44 Sensors

North

South

West
East

ETM for One Arm Test

Air Handler Fans
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Dominant Wave Vector vs. Time

Wavenumber k    [rad/m]x
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10 Hz 25 Hz 50 Hz

blob size: array resolution, not real wave
circles - 1000, 500, 250, 100 m/s wave speeds

seismic field more simple than we thought

50Hz is more complex, but we don't care for many years.

how much time does this represent??

If you do not see a movie here, please download it separately from the DCC
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Summary of Results from Movies

Simple plane wave, most of the time
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Summary of Results from Movies
Simple plane wave, most of the time

Fans are most significant source, especially near 10 Hz
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Summary of Results from Movies
Simple plane wave, most of the time

Fans are most significant source, especially near 10 Hz

Possibly seeing some reflections 

Need further analysis, why is the speed so small?
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Summary of Results from Movies
Simple plane wave, most of the time

Fans are most significant source, especially near 10 Hz

Possibly seeing some reflections 

Mostly surface waves
Need further analysis, why is the speed so small?

Need to calculate surface vs. body amplitude ratios

Large k implies surface waves
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Summary of Results from Movies
Simple plane wave, most of the time

Fans are most significant source, especially near 10 Hz

Possibly seeing some reflections 

Mostly surface waves

Not much evidence of scattering
Need to calculate surface vs. body amplitude ratios

Need further analysis, why is the speed so small?
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Wave Speed vs. Frequency

10am2am



LIGO-G1200540 GWADW, 15 May 2012 14

No Body Waves at 25 Hz?
A
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32

Lots of noise at 25Hz - probably a surface source dominating
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Propagation Direction vs. Freq
10am2am
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Testing the Filtering Code

Subtract seismic noise from one sensor, using surrounding sensors
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Testing the Filtering Code

Accelerometer # 44, raw data



LIGO-G1200540 GWADW, 15 May 2012 17

Testing the Filtering Code

Accelerometer # 44, residual, after subtraction
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Testing the Filtering Code

Removed all seismic signal, down to noise floor
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Implications for Future Detectors

Surface seismic waves really do dominate - good!

Not much scattering - good!
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Implications for Future Detectors

10 or fewer sensors per test mass

Wilcoxon accelerometers sensitive enough

Surface seismic waves really do dominate - good!

Not much scattering - good!

< $1,000 per single-axis sensor
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Implications for Future Detectors

10 or fewer sensors per test mass

Wilcoxon accelerometers sensitive enough

Surface seismic waves really do dominate - good!

Not much scattering - good!

Isolating air handler fans may be a way to 
"shield" from Newtonian noise 

< $1,000 per single-axis sensor
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Next Steps

Quantify scattering
Calculate overlap of detected wave with plane waves 

Look at the first few dominant waves
Characterize sources

Quantify body wave vs. surface wave amplitudes
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Next Steps

Quantify scattering
Calculate overlap of detected wave with plane waves 

Look at the first few dominant waves
Characterize sources

Quantify body wave vs. surface wave amplitudes

Array measurements with controlled sources
Systematic study of types of sources

Scattering around a hole
Waveguiding
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Next Steps

Quantify scattering
Calculate overlap of detected wave with plane waves 

Look at the first few dominant waves
Characterize sources

Quantify body wave vs. surface wave amplitudes

Array measurements with controlled sources
Systematic study of types of sources

Scattering around a hole
Waveguiding

Model reflection and scattering using COMSOL
Compare with measurements
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Next Steps

There's lots to do, both with the array and with Newtonian 
noise studies in general.  The more the merrier!

Quantify scattering
Calculate overlap of detected wave with plane waves 

Look at the first few dominant waves
Characterize sources

Quantify body wave vs. surface wave amplitudes

Array measurements with controlled sources
Systematic study of types of sources

Scattering around a hole
Waveguiding

Model reflection and scattering using COMSOL
Compare with measurements
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Vision of the Future

No Newtonian noise subtraction
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Vision of the Future

5x Newtonian noise subtraction
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Vision of the Future

3G GWINC curve with 30x Newtonian noise suppression

Bluebird2 3G design
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