Growth and characterization of III-V epitaxial mirror coatings on silicon

Angie C. Lin¹, Ashot S. Markosyan¹, Riccardo Bassiri¹, Alan Cumming², Iain Martin², Karen Haughian², Roger Route¹, Brian Lantz¹, James S. Harris¹, Sheila Rowan², Martin M. Fejer¹

¹ Stanford University

² University of Glasgow

Gravitational Wave Advanced Detector Workshop

May 14, 2012

Single crystalline coatings

For third generation detectors operating at cryogenic temperatures:

- Low mechanical loss in silicon at low T
- Silicon is available in large sizes:
 - Commercially available: 300 mm (12")
 - Research: 450 mm (18")
- Single crystalline coatings have already been shown to have low mechanical loss²

Direct integration of mirrors onto Si

• Materials systems with index contrast but no change in lattice constant

Integration approaches

• Commercially available GaAs: 6"

 Dislocations in SiGe arise from 4% mismatch between Si and Ge

 Lattice-matched system, but less studied

Outline

- Epitaxial integration of III-V coatings on Si
- Anticipated challenge: antiphase domains
 - Growth technique: molecular beam epitaxy
 - Film characterization techniques
 - Reducing antiphase domains through growth conditions
- GaP/AIP mirror coating on Si: initial results
 - Materials characterization
 - Optical absorption
 - Mechanical loss
- Summary and future work

Anticipated challenge: antiphase defects

Antiphase boundary (APB): defect with incorrect bonds (P-P or Ga-Ga)

Double atomic steps on Si surface \rightarrow correct bonds

Single atomic steps on Si surface → wrong bonds

Growth by molecular beam epitaxy

Sources and components:

- Group III: Ga, Al, In
- Group V: As, P
- Group IV: Ge, Si
- In-situ reflection high-energy electron diffraction (RHEED)

Advantages of using MBE:

- Low impurity incorporation (UHV)
- Monolayer control
- Growth rate and substrate temperature decoupled

Control over growth rate, substrate temp, V/III flux ratio

Ex-situ characterization techniques

Detect APDs with atomic force microscopy (AFM) and transmission electron microscopy (TEM)

- AFM: surface pit density
- TEM: how APBs propagate in the film

Sample courtesy of D. Liang, Y. Kang (Stanford)

Achieving high quality GaP on Si

A.C. Lin et al. J. Vac. Sci. Technol. B 29 (2011) 1201.

Annihilate defects

Outline

- Epitaxial integration of III-V coatings on Si
- Anticipated challenge: antiphase domains
 - Growth technique: molecular beam epitaxy
 - Film characterization techniques
 - Reducing antiphase domains through growth conditions
- GaP/AIP mirror coating on Si: preliminary results
 - Materials characterization
 - Optical absorption
 - Mechanical loss

Summary and future work

Epitaxial GaP/AlGaP layers on Si

- Index contrast $\Delta n = 0.28$
- Pure AIP oxidizes easily

Dispersion relations from N.A. Pikhtin et. al. Soviet Phys. 9 (1967) 107. Transfer matrix Matlab code courtesy of Tomás Sarmiento (Stanford)

Achieved expected reflectivity

For 10 pairs: measured reflectivity matches theoretical reflectivity (83%)

Transmission electron microscopy

Optical absorption

- Using photothermal common-path interferometry (PCI) to measure absorption
- Possible source of absorption: free carriers in GaP^{1,2}
 - Si outdiffusion from substrate
 - Carbon, oxygen incorporation
 - Antiphase domains (Ga-Ga, P-P)
- Low temperature will freeze out the carriers

Secondary ion mass spectroscopy

on (atoms/cc)

Initial results for mechanical loss

No discernible difference between lowest measured losses in coated and uncoated samples

Summary and future work

- GaP/AIP mirrors can be grown directly on Si
- Challenges with epitaxial integration onto Si can be addressed by nucleation and growth conditions
- Preliminary structural, optical absorption, and mechanical loss measurements have been done on GaP/AlGaP mirrors

Future work:

- Low temperature absorption measurements
- Low temperature mechanical loss measurements
- Investigating other growth conditions to further reduce defects and impurities

Acknowledgements: This work was supported by NSF grant PHY-10 68596.

Material properties

Material	Lattice constant (Å)	Mismatch (%)	Refractive index (near-IR)	Linear thermal expansion coefficient (° C ⁻ ¹)
AIP	5.4510	٦	2.75	6.10*10 ⁻⁶
GaP	5.4505	z- o 1	3.02	4.65*10 ⁻⁶
Si	5.4310	J 0.4	3.42	2.60*10 ⁻⁶
AIAs	5.6611	٦	2.86	5.20*10 ⁻⁶
GaAs	5.6533		3.30	5.73*10 ⁻⁶
Ge	5.6580	J U.U8	4.00	5.90*10 ⁻⁶

In-situ characterization: RHEED

Observe how the film is growing: island or 2D growth mode

Achieving high-quality GaP on Si

In order of growth sequence:

- 1. Start with a smooth, double-stepped Si surface
 - High temp anneal under H₂ flow ¹
- 1. Reduce APD formation
 - 2D nucleation of GaP on Si ²⁻⁵
- 2. Encourage APD annihilation
 - Control APB propagation ⁶

B. Kunert et al. Thin Solid Films 517 (2008) 140.
 K Yamane et al. J. Crys. Growth 311 (2009) 794.
 J. Grassman et al. Appl. Phys. Lett. 94 (2009) 232106.

⁴ I. Nemeth et al. J. Crys. Growth 310 (2008) 1595.
⁵ A.C. Lin et al. J. Vac. Sci. Technol. B 29 (2011) 1201.
⁶ X. Yu et al. J. Crys. Growth 301-302 (2007) 163.

■

Control GaP orientation with temperature

	High T nu	cleation	Low T nucleation		
Sample	А	A B		D	
Nucleation layer	525°C	500°C	325°C	325°C	
GaP film	525°C	550°C 600°C	550°C	550°C 600°C	
RHEED	4x2	4x2	2x4	2x4	
orientation	-	-	+	+	

[110]

 \rightarrow

1000

000

rms = 1.74 nm

Need well-controlled nucleation

GaP film nucleated with migration enhanced epitaxy (MEE)

K. Yamane et al. J. Crys. Growth 311 (2007) 794-797.

Two-dimensional III-V film on Si

3x reduction in rms roughness with addition of Al

Abrupt interface between III-V and Si

Effect of the first 5 monolayers

e Jin et al. J. Vac. Sci. Technol. B 29 (2011) 1201.

Using TEM to view APDs

APDs of opposite polarity have contrast under certain diffraction conditions \rightarrow distinguish antiphase boundaries from other defects (stacking faults, dislocations)

