

Investigating coating material properties for future generations of gravitational wave detectors

<u>R. Bassiri^{1,2}</u>, K. B. Borisenko³, R. L. Byer¹, K. Evans², M. M. Fejer¹, J. Hough², N. Kim¹, B. Lantz¹, A. Lin¹, A. Markosyan¹, I. W. Martin², R. K. Route¹, S. Rowan², J. F. Stebbins¹

LIGO Group, Stanford University,
 SUPA, School of Physics and Astronomy, University of Glasgow,
 Department of Materials, University of Oxford

GWADW 2012 - Waikoloa, Hawaii

rbassiri@stanford.edu

- Introduction
- Optical absorption measurements
 - Photothermal Common-path Interferometry (PCI) measurements
 - Preliminary temperature dependent results amorphous silicon coatings
- Atomic structure investigations
 - Atomic structure investigations using Transmission Electron Microscopy (TEM)
 - Nuclear Magnetic Resonance (NMR) measurements
- Single crystalline coatings
 - GaP/AIGaP Molecular Beam Epitaxial (MBE) coatings
- Summary of key experimental techniques
- Conclusions

Introduction

- Research into the materials used in the detector optics is vitally important to improve the sensitivity of future detectors
 - Advanced LIGO is pushing the limits for current coating materials
 - In order to improve upon this, new materials and technologies will need to be developed
- In order to investigate the coating material properties several experimental techniques have been developed
- Aim is to relate loss sources to changes in the atomic structure for amorphous coatings
- Investigate possible alternative to amorphous coatings such as single crystal GaP/ AlGaP coatings

GWINC Advanced LIGO noise budget

STANFORD

UNIVERSITY

Introduction

- Optical absorption measurements
 - Photothermal Common-path Interferometry (PCI) measurements
 - Preliminary temperature dependent results amorphous silicon coatings
- Atomic structure investigations
 - Atomic structure investigations using Transmission Electron Microscopy (TEM)
 - Nuclear Magnetic Resonance (NMR) measurements
- Single crystalline coatings
 - GaP/AIGaP Molecular Beam Epitaxial (MBE) coatings
- Summary of key experimental techniques
- Conclusions

PCI optical absorption measurements:

Photo of PCI setup at Stanford University

- Photo-thermal Common-path Interferometry (PCI)
 - Allows measurement of bulk and coating optical absorptions
 - Capability for T-dependent measurements from 15 K from recent addition of cryostat
 - Measures thermal lensing of the pump beam caused by optical absorption
 - Maximum sensitivity at 9 W pump beam for coatings is 0.05 ppm and bulk is 0.2 ppm/cm

Ashot Markosyan - ashotm@stanford.edu

Preliminary α-Si coatings room temperature measurements

Optical absorption of α-Si coatings vs. annealing temperature (in air at room temperature)

- Optical absorption of three amorphous (α) Si coatings
 - Measurements made at 1556 nm for as-deposited, 300°C and 450°C annealed
 - Shows ~70% drop in absorption between as-deposited and 450°C annealed
 - Similar trend to silica/ tantala coatings
 - Further study is required in deposition techniques and post-deposition treatments which can reduce absorption
 Ashot Markosyan - ashotm@stanford.edu

Ę

Preliminary α-Si coatings T-dependent measurements

 Recent integration of a flow cryostat to the PCI setup has given the capability for temperature dependent absorption measurements

- Preliminary temperature dependent optical absorption for the 300°C and 450°C annealed α-Si coatings
 - Results show decrease in optical absorption at 1556 nm as temperature is decreased

Ashot Markosyan - ashotm@stanford.edu

Ę

Ongoing and future work

- Continue to develop T-dependent measurement capabilities
- Aim to measure absorption of bulk single crystal silicon
 - Currently obtaining high quality float-zone silicon for measurements
 - T-dependent measurements planned

Ashot Markosyan - ashotm@stanford.edu

- Introduction
- Optical absorption measurements
 - Photothermal Common-path Interferometry (PCI) measurements
 - Preliminary temperature dependent results amorphous silicon coatings
- Atomic structure investigations
 - Atomic structure investigations using Transmission Electron Microscopy (TEM)
 - Nuclear Magnetic Resonance (NMR) measurements
- Single crystalline coatings
 - GaP/AIGaP Molecular Beam Epitaxial (MBE) coatings
- Summary of key experimental techniques
- Conclusions

Atomic structure investigations: RDF investigations

Tecnai F20 TEM

Diagram showing electron beam interactions

- Transmission Electron Microscopy (TEM)
 - Ideal tool for studying the atomic structure and chemistry of the coatings
 - Major tools are imaging, diffraction and spectroscopy
 - Extensive capabilities at both Stanford and Glasgow
 - Major tool for amorphous materials is the Reduced Density Function (RDF)

Atomic structure investigations: RDF investigations

• RDFs provide a statistical representation of where nearest neighbor atoms sit with regards to a central atom: r^{∞}

- RDF analysis:
 - 1st peak relates mostly to metal oxygen bonds
 - 2nd peak relates mostly to metal metal distances
 - Peak positions indicate most likely place for atomic neighbors to sit
 - Peak height indicate and peak width indicates level of homogeneity or 'local order' in structure

Atomic structure investigations: TiO2 doped Ta2O5

- Relationship to mechanical loss
 - Strong relationship from changing properties in the experimental RDFs
 - Strong correlation between mechanical loss and changing atomic structure properties
 - Pearson correlation coefficient, r = 0.93

Atomic structure investigations: TiO2 doped Ta2O5

 $\label{eq:action} \mbox{Atomic model of the 20.4\% TiO_2 doped Ta_2O_5 coating, highlighting the Ta_2O_2 and TaTiO_2 crystalline building blocks$

- Models are generated from experimental diffraction data using Reverse Mote Carlo (RMC) and Molecular Dynamics (MD) simulations
- Crystalline ring building blocks seen in all models
- Atomic models provide many different possibilities for understanding the material properties
- Studying these building blocks, and larger structures, may provide an insight into the mechanisms responsible for mechanical loss (as in the case for silica)

Atomic structure investigations: TiO2 doped Ta2O5

- Bond and distance analysis provides detailed understanding of the local structure environments
- Distance type and angle type distributions show clear differences between the 20.4% Ti and 53.8% Ti doped models
- In contrast angle type distributions show only subtle changes
- Ta-O-Ta, Ta-O-Ti shows reduced peak position by 10° as Ti doping is increased

STANFORD UNIVERSITY

NMR measurements

- Nuclear Magnetic Resonance (NMR) spectroscopy
 - NMR uses splitting of nuclear spin energy level of specific nucleus in a magnetic field
- Capable of quantifying the distributions of and connections among structural units
- Sensitive to the local structure
 - Nuclear specific, e.g. ¹⁷O NMR

Varian NMR with Oxford Magnet

Namjun Kim - njkim@stanford.edu

NMR measurements: ¹⁷O NMR of sol-gel and IBS Ta₂O₅

- Two peaks were assigned based on the known crystalline structure ^[3]O:^[2]O ~ 3:2
- The difference in relative intensities between amorphous and crystalline Ta₂O₅ suggests a difference in OTa₂/OTa₃ ratio in amorphous Ta₂O₅
- Amorphous Ta₂O₅ from different preparation methods do not show any significant difference
- Subtle differences can be observed (linewidths, peak positions, etc.) and is currently under investigation

Namjun Kim - njkim@stanford.edu

STANFORD

UNIVERSITY

Electron Paramagnetic Resonance (EPR) Spectroscopy measurements: heat-treated Ta₂O₅ coatings

EPR Spectra of tantala with varying annealing temperatures (collaboration with Prof. Ed Solomon, Stanford, Chemistry)

- EPR detects unpaired electrons in the sample
- Only the unannealed amorphous tantala shows an unpaired electron
- EPR signal is most likely due to oxygen deficiency in un-annealed sample, estimated ~ 0.2%
- Oxygen deficiency may play an important role in improvement of optical and mechanical properties upon annealing

Namjun Kim - njkim@stanford.edu

Ongoing and future work

- Experimental techniques which are important for accurate atomic structure investigations:
 - Density (X-ray Reflectometry)
 - Stoichiometry (Electron Energy Loss Spectroscopy)
 - Atomic nearest neighbor distributions (RDFs)
 - Other constraints (Crystal structures, NMR)
- X-ray absorption spectroscopy
 - Complimentary measurements to RDF studies
 - Direct measurement of local structure around Ta and Ti atoms in TiO₂ doped Ta₂O₅ coatings
- Further investigations are planned
 - TiO_2 doped $Ta_2O_5 NMR/TEM$ comparison to optical absorption and mechanical loss
 - Understanding changes in performance of coated silica vs. bulk silica
 - Medium range atomic structure of α-Si coatings
- Continuing development into linking coating loss to atomic structure measurements

- Introduction
- Optical absorption measurements
 - Photothermal Common-path Interferometry (PCI) measurements
 - Preliminary temperature dependent results amorphous silicon coatings
- Atomic structure investigations
 - Atomic structure investigations using Transmission Electron Microscopy (TEM)
 - Nuclear Magnetic Resonance (NMR) measurements
- Single crystalline coatings
 - GaP/AIGaP Molecular Beam Epitaxial (MBE) coatings
- Summary of key experimental techniques
- Conclusions

Single crystalline coatings

GaP/ AIGaP epitaxial coatings

Schematic of GaP/ AlGaP coatings

TEM image of GaP/ AIGaP coatings highlighting defects being annihilated in the GaP buffer layer

- Effort to develop an alternative to amorphous IBS coatings
- For use in cryogenic third generation detectors working at around 1550 nm
- The advantages of these coatings:
 - Can be grown on single crystal Si
 - Low bulk mechanical loss in Si (and crystalline films) at cryogenic temperatures
 - Large-area substrates (commercially-available 12" Si)
- Continued development to understand and minimize defects
 Angie Lin angiel@stanford.edu

- Introduction
- Optical absorption measurements
 - Photothermal Common-path Interferometry (PCI) measurements
 - Preliminary temperature dependent results amorphous silicon coatings
- Atomic structure investigations
 - Atomic structure investigations using Transmission Electron Microscopy (TEM)
 - Nuclear Magnetic Resonance (NMR) measurements
- Single crystalline coatings
 - GaP/AIGaP Molecular Beam Epitaxial (MBE) coatings
- Summary of key experimental techniques
- Conclusions

Summary of key experimental techniques

Atomic structure investigations (in collaboration with Glasgow)

 Experimental techniques that aim to link macroscopic material properties to the coating atomic structures:

Conclusions

- Optical absorption measurements
 - PCI optical absorption measurements to probe both bulk and coating absorption at 1064 nm and 1556 nm
 - Preliminary measurements on amorphous silicon coatings show:
 - As increased post-deposition annealing (450°C current max) increases optical absorption decreases
 - T-dependent absorption decreases for 300°C and 450°C coatings as temperature decreases
 - Continued development into T-dependent measurement, with emphasis on bulk Si measurements
- Atomic structure investigations
 - TiO₂ doped Ta₂O5 show strong correlation between atomic structure properties and mechanical loss
 - NMR and EPR spectroscopy probe local co-ordination of Ta₂O₅ coatings which show signs of oxygen deficiency when coating is un-annealed
 - Continued development and use of a number of experimental techniques to accurately investigate the atomic structure and relate to sources of loss
- Single crystalline coatings
 - GaP/ AIGaP single crystal coatings provide an alternative to IBS coatings
 - Can be directly deposited onto silicon substrates
 - Continued development to understand and minimize defects

Acknowledgements: NSF for financial support: PHY-10 68596, PHY-07 57896, PHY-08 55350

Investigating coating material properties for future generations of gravitational wave detectors

<u>R. Bassiri^{1,2}</u>, K. B. Borisenko³, R. L. Byer¹, K. Evans², M. M. Fejer¹, J. Hough², N. Kim¹, B. Lantz¹, A. Lin¹, A. Markosyan¹, I. W. Martin², R. K. Route¹, S. Rowan², J. F. Stebbins¹

LIGO Group, Stanford University,
 SUPA, School of Physics and Astronomy, University of Glasgow,
 Department of Materials, University of Oxford

GWADW 2012 - Waikoloa, Hawaii

rbassiri@stanford.edu