Noise issues in vibration sensing and isolation for Advanced Virgo

Eric Hennes

E.Hennes@Nikhef.nl GWADW, Hawaii 2012, May 15

Nikhef 2011-2014 "vibration" activities on AdV

- External Injection Bench Seismic Attenuation (SAS)
- Isolation of 5 new suspended benches for linear alignment
- High sensitivity diagnostic accelerometer
- Input Mode Cleaner:
 - new End mirror + suspension
 - new Dihedron + support

External Injection Bench (EIB) Seismic Attenuation (SAS)

Motivation (since 2009):

- beam jitter noise is spoiling sensitivity
- Ascribed to mechanical modes of
 - bench frame (15-20, 30-60 Hz)
 - optical mounts (200-300 Hz)
- excited by both seism and "a bit of" sound
- to be minimized for Virgo+ and AdV

EIB-SAS Requirements

- Up to 40 dB attenuation > 10 Hz
- Long term stability (RMS 20 μm, 15 μrad, max 1 °C variations
- DC-control

EIB-SAS: adopted from HAMSAS project (Caltech) & AEI-Hannover (2010)

• 3 GAS filters, 3 Inverted Pendulum legs

Active positioning and low-f resonance damping

- 6 x LVDTs, 6 x geophones, 6 x voice coil actuator
- 800 kHz 18 bit ADCs
- 7 stepper motors

Built and tested at Nikhef, 2011

GWADW May 15, 2012

Optical bench

EIB-SAS complication: spring box modes 30-60 Hz

- Modes due to upper IP flex and spring box internal compliances
- Can partially be damped with eddy current damped resonators

EIB-SAS: First major Advanced Virgo installation (Dec 2011)

EIB-SAS after installation

EIB in acoustic enclosure

EIB-SAS commisioning: beam jitter

EIB-SAS commisioning: bench motion and acoustic noise

10⁻⁵

10⁻⁶

10⁰

Fiori et al.

 10^{1}

Frequency [Hz]

Conclusions after many tests

- •1 100 Hz: bench moved by acoustic noise from central building Airco
- •40 50 Hz: second noise source is present
- •Limited shielding by acoustic enclosure
- Optical mounts are moved by sound

10²

EIB-SAS: conclusions

- Commissioning EIB-SAS revealed prominent roll of acoustic noise
- \bullet Laser lab walls are cleanroom walls \rightarrow do not shield acoustic noise
- EIB-SAS is doing only most of the job, but
- It is usefeul for Advanced Virgo ..
 - to replace these walls by concrete walls
 - to move Airco's outside main building

MultiSAS: Isolating suspended benches for linear alignment

5 similar systems consisting of:

3 km

3 km

- MultiSAS (Nikhef)
- Optical bench (DET/LAPP)
 UHV vacuum mini-tower (LAPP)

9

MultiSAS: multi-stage 6DOF bench isolation & control

Requir 0128A-1	rements @ 10 Hz (VIR- 2)	
δh	2 E-12 m/√Hz	tought
$\Delta heta$	3 E-15 rad/√Hz	
h _{RMS}	2 E-5mm	
θ_{RMS}	3E-9 rad	

Characteristics

- two-stage vertical isolation (GAS)
- 3-stage horizontal isolation $(IP, P \downarrow P)$
- 320 kg single-wire suspended bench
- sensing/control technology like EIB-SAS

Schedule

- Design approved
- Prototype assembled
- In-air testing started with dummy bench
- Integration test at Nikhef/LAPP from Sep 2012
- AdV production and first chamber installation 2013

MultiSAS: special GAS mechanics

Top GAS filter Down-tunable to 100 mHz thanks to combination of over-compression and hysteresis

MultiSAS Modal analysis: modes < 250 mHz

.... and 3 more

MultiSAS: Modal analysis: modes < 2 Hz

.... and 4 more

MultiSAS: Modal analysis > 60 Hz

^{....} Etc etc

MultiSAS: residual horizontal displacement

Calculated from FEM transfer functions (open loop)

MultiSAS: residual tilt (FEM)

MultiSAS: current state of prototype

- Cabling, Electronics and DAQ to be installed
- Mechanics to be fine-tuned
- Performance to be measured
- Dummy bench in production
 Looking forward to MiniTower for tests in vacuo
- Development of diagnostic interferometric accelerometer

High-sensitivity diagnostic accelerometer

Mechanics: monolithic single-axis Watt-linkage oscillator (Bertolini, 2005*)

Projection of thermal noise x_{th} reduced by choosing

- low resonance frequency (~ 0.5 Hz)
- large quality factor (> 100)
- large mass (~ 1 kg)

Readout: based on balanced Michelson interferometer (Gray et al, 1998**)

- LED source allows for low Relative Intensity noise (RIN)
- Sensing of both reflected and transmitted beam \rightarrow >40 dB RIN cancelling
- fringe locking by feed back loop to piezo actuator or voice coil

*Nuclear Instruments and Methods in Physics Research A 556, 2006, 616–623

Accelerometer mechanics

$$H(\omega) = \frac{Z(\omega)}{X(\omega)} = \frac{\omega^2(1-A)}{\omega_0^2 - \omega^2 + i\omega\omega_0/Q}$$

frame displacement

Projected thermal noise PSD:

$$X_{th}^2(\omega) = \frac{4k_B T \omega_0^2}{MQ \omega^5}$$

For structural damping:

$$Q = \frac{1}{\phi} \left(1 + \frac{gL(M_p - M_{IP})}{k} \right)$$

Construction
Wire-cut monolithic aluminum

- Symmetric pendulum + inverted pendulum
- All flexes (4x5x0.1 mm) in tension
- Adjustable mass distribution (tuning)
- Optional: voice coil actuator

Interferometric read-out

Photodiode incident power

$$P_{T} = \frac{P_{inc}}{4} \left(1 + \operatorname{Re}(C(z/c)) \cdot \cos \frac{4\pi z}{\lambda} \right)$$
$$P_{R} = \frac{P_{inc}}{8} \left(1 - \operatorname{Re}(C(z/c)) \cdot \cos \frac{4\pi z}{\lambda} \right)$$

- $\begin{array}{l} z &: {\rm mass-to-frame \ displacement} \\ P_{\rm inc} : {\rm incident \ LED \ power} \\ \lambda &: {\rm carrier \ wavelength} \end{array}$

- : complex temporal coherence С

Coherence length $\Lambda_{\rm c}$

Related to source bandwidth

$$\Lambda_{c} \approx 0.44 \frac{\lambda^{2}}{\lambda_{BW}}$$
$$= 0.44 \frac{(880 \text{nm})^{2}}{30 \text{nm}} \approx 11 \,\mu\text{m}$$

Readout current sensitivity Lock on half fringe:

$$\frac{dI_{Out}}{dz} = \frac{\rho \pi P_{inc}}{\lambda} = \frac{4\pi I_{T,DC}}{\lambda}$$

Optical and electronic readout current noise

Shot noise (SN) current

$$i_{SN}^2 = 2q\rho(P_T + P_R)$$

Intensity noise

< -40 dB of shot noise (?)

Dark current noise $i_{dark}^{2} = \frac{I^{2}}{BW}$

ADC noise

$$i_{ADC}^{2} = \left(\frac{V_{pp}}{2^{n+m}}\right)^{2} \frac{1}{6f_{s}r_{f}^{2}}$$

 $m = \log(\frac{f_{os}}{f_{o}})/\log 4$

Electronic noise

$$i_{OpAmp}^{2} = V_{op}^{2} \left(\frac{\omega_{cv}}{\omega} + 1\right) / r_{f}^{2} + I_{op}^{2} \left(\frac{\omega_{ci}}{\omega} + 1\right)$$
$$i_{R,termal}^{2} = \frac{4k_{B}T}{r_{f}} \left(\frac{\omega_{cr}}{\omega} + 1\right)$$

n: number of bits f_s : sampling frequency f_{os} : over-sampling frequency r_f : transimpedance resistance V_{op}, I_{op} : OpAmp noise levels $\omega_{cv}, \omega_{cv}, \omega_{cv}$: corner frequencies V_{pp} : ADC peak-peak voltage

Input mode cleaner (IMC) modifications: 1. Dihedron support

IMC modifications; 2. New Dihedron

- Shaped and polished by Optronica (Den Helder, NL)
- Mirrors connected by Van der Waals bonds (no adhesive)
- Angle (89° 58' 58") machined to 0.4" accuracy (max 2" allowed)
- To be coated (by IPN-Lyon)
- To be installed in 2013

IMC modifications; 3. New End Mirror suspension

- mirror twice as thick
- including front (and back?) baffle
- adapting Marionette and gear box
- new installation procedure /tools
- largest challenge: connect baffles stiffly to reference mass

EIB ←

144 m

→ITF

Summary

- EIB meets requirements, provided acoustic sources be removed or better shielded.
- MultiSAS prototype is working so far; performance to be fully tested
- New IMC dihedron mirror waiting for coating, than ready to be installed on its new support

IMC end mirror suspension: a challenge regarding stiff baffle mounting

• Diagnostic accelerometer R&D looks useful tool for bench seismic attenuation performance testing

Projections of noise and bench residual on sensor displacement z

System design parameters

Name	Symbol	Value	Unit	Туре	
Laser power	P_{inc}	5	mW	Hamamatsu LED	
Laser wavelength	λ	880	nm		
Photodiode responsivity	ρ	0.6	A/W	Hamamatsu S2386-44K	
Photodiode dark-current	I_d	0.02	nA	Hamamatsu S2386-44K	
Accelerometer					
Resonant frequency	f_0	0.5	Hz		
Effective mass	M_e	0.85	kg		
Quality factor	Q	100			
Damping ratio	ζ	0.005			
Data acquisition	·				
Sampling frequency	f_s	1	kHz	Virgo DAQ	
Oversampling frequency	f_{os}	800	m kHz	Virgo DAQ	
Voltage range	A	20	V_{pp}	Virgo DAQ	
ADC bits	n	18	bits	Virgo DAQ	
Read-out circuit					
Transimpedance amplifier resistance	r_{f}	8000	Ω		
Corner freq. resistor current noise	f_{cr}	10	Hz		
Corner freq. op-amp current noise	f_{ci}	100	Hz	LT1024	
Corner freq. op-amp voltage noise	f_{cv}	0.08	Hz	LT1024	
Op-amp voltage noise	V_{op}	6	$\mathrm{nV}/\sqrt{\mathrm{Hz}}$	LT1024	
Op-amp voltage noise	I_{op}	0.1	$\mathrm{pA}/\sqrt{\mathrm{Hz}}$	LT1024	

Component list

Name	Type	Vendor	Cost	Units					
Light sources									
SLED	Superlum 38HP	Superlum	X€	1					
LED	Thorlabs	Thorlabs	320 €	1					
Diode laser	ρ	Thorlabs	X€	1					
Laser driver	I_d	Thorlabs	X €	1					
Electronics, diodes, and actuators									
Lock-box	Lock-box	Vrije Universiteit 2000 €		1					
HV-amplifer	WMA-280	Falco systems	1490 €(excl tax.)	2					
Photodiode	S5971	Hamamatsu	6.50 €	2					
Amplifier	LT1028	Farnell	10 €	1					
Resistors	Х	Farnell	10 €	1					
Connectors	BNC	Farnell	$4 \in$	1					
PCB fabriaction	Х	Х	200 €	1					
Piezo	HPCh 150/12-6/2	Piezomechanik	145 €	2					
Optics and mechanics									
Beam splitters	BS008	Thorlabs $123,41 \in$		2					
Mirrors	Х	Thorlabs	Х	2					
Fiber colimators	Х	Thorlabs	Х	2					

Table 2: Table of costs (to be updated).

