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Local (perturbing) gravitational sources 

• Suspended test-masses 
(TMs). 

• Local mass surrounding 
TMs may move. 

 This movement will 
change Newtonian axial 
forces on TMs—quasi 
instantaneously. 

• Ostensibly, calculating the 
effects of such mass 
movements (1–3) appears 
obvious and 
straightforward 

− (are effects 
negligible ?) 

Presenter
Presentation Notes
Model cylinder demo.



3 

Background—cylindrical test-masses for the 
Satellite Test of the Equivalence Principle (STEP) 
experiment 

• In vacuo. 

• 2 K. 

• Drag-free 
spacecraft 
(as GP-B). 

• Superconducting 
 Linear bearings. 

• SQUID differential 
displacement 
detection. 

• Two bodies A and B. 

• Different materials. 

• Permanent free-fall. 

A 
B 

• Aimed at measuring 
 Eötvös ratio η (≡ ∆az/a) 

to 1 part in 1018. 

• STEP led by Prof. Francis Everitt, 

 Uni. of Stanford, USA. 

• Earth appears to be 
orbiting CCW about 
test-masses. 

z-axis 
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• Paired cylindrical test-
masses 

– Co-axial  
– Concentric. 

• Local (potential) 
gravitational sources of 
systematic error, e.g. 
bubbles in liquid 4He. 

– A bubble’s (negative) 
mass can pull 
gravitationally, and 
differentially, on test-
masses 

– Synchronous with 
perceived rotation 
rate of ‘Earth around 
spacecraft.’ 

 Can mimic an EP violating 
signal. 

Local gravitational sources for STEP  
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Newtonian coupling to STEP Test Masses  

Sensitive axis 

• Problem resolved 
itself into finding the 
axial acceleration of 
each test-mass due 
to the local source-
mass m — here, a 
perturbing 
(negative) source. 

 Challenge: 
determining the 
best shape for each 
test-mass so as to 
minimise ∆az. 

Source- 

mass 

• Radial distance of source 
mass R0 was held constant, 
and θ was stepped in 1º 
increments through one 
quadrant.  

• At each new source-mass 
position (value of θ) the total 
gravitational force on each 
test mass, due to the point 
source-mass, was found by 
integration. From this, the full 
axial acceleration of each 
test-mass was deduced. 

• The two axial accelerations 
were differenced to find ∆az, 
and the ratio ∆az/a was 
calculated, where a is the 
common-mode acceleration. 

θ 

m 
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(constant) 

       6 ppm 
(outer mass radius = 28.5 mm,  
   semi axial-length = 40.5 mm 
                            R0 = 250 mm). 

Residual differential acceleration ratio  

 An early example of the 
resulting plot of ∆az/a, 
calculated using 3D Monte-
Carlo integration over the 
volume of each test-mass, 
separately...  

• Unexpected multi-lobed angular 
structure seen in the spherical 
polar plot—having alternating 
signs for the differential, axial, 
gravitational coupling. 

...integration over (say) an 
extended source-mass would 
involve 6D integrations (3D over 
source + 3D over each relevant 
test-mass 

–   even today,  
      Unfeasibly lengthy. 

 

• The 3D integrations of primitive 
gravitational vector forces took 40 h 
of computation at that time, but... 

• Polar plot of ratio ∆az/a. 

CM 
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 Recognition of this relationship 
led to a far better method for 
determining the axial 
acceleration of cylindrical test-
masses, due to point 
gravitational sources 

– and so, by superposition, 
due to any gravitational 
sources. 

Fortuitous gravitational balancing…  

• It turned out in the previous example that gravitational ‘64-pole’ 
Newtonian coupling dominated the differential acceleration 
between two almost perfectly balanced test-masses 

– Polar angular appearance was so striking its functional 
form was perfectly recognizable as 

– the Legendre polynomial P7(cos(θ)): - 

 The original 40 h calculation 
by 3D integration was now 
completed in less than 1 s, 
and to higher accuracy, using 
this method. 
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(Unit source mass on 
   z-axis at z = R0). 

. 

Closed-form solution for 
Fz  possible here, with 
source-mass on axis : - 

Force Fz 

mass M 

Single test-mass: source-mass on its 
cylindrical axis 

becomes 

Newtonian gravitational 
attraction towards the 
fixed source-mass. 

Presenter
Presentation Notes
Unpromising, but...
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Points within the body described by vector r (x, y, z ) . 
External field point P described by vector R0, (X, Y, Z ) .  
The density of the body, ρ, may vary throughout its volume, V.  
Axes are fixed within body. 
Origin is at the CM of the body. 

Newtonian gravitational attraction of an extended 
body by a (unit) point source-mass  

test-mass 

mass M 

sensitive-axis 

axial Force F 

source-mass 
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Quadrupolar PE, source at P : - 
the first and most important deviation 
from monopolar Gravitational  
behaviour. 

Monopolar PE, source at P (acts as if  
all the body’s mass were at its CM). 

Zero dipolar PE 
(from definition of CM). 

G is the gravitational  constant = 
6.67 × 10−11 N.m2.kg−2; unit 
source-mass. 

...
 

(Taylor 
Expansion). 

Gravitational PE, source at P, is: 

Expansion of the PE about R0  

∴ 
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Monopolar axial Force, Fz 
(0) 

• Test-mass shown as ‘wire 
frame’ cylinder. 

• Origin of polar co-
ordinates at its CM. 

• R0 held constant,   varied. 

• Lobe pattern of axial 
Force identical for all 
cylindrical test-masses—
a positive and a negative 
sphere... 

• ...Force always attractive. 

• Low axial coupling from 
source-masses lying to 
the sides of the test-
mass, as shown.  

θ 

Unit source-mass. 
• Arbitrary source-mass 

position. 

F z 
(0) 

Axial Force = 
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• Test-mass shown as ‘wire 
frame’ cylinder. 

• R0 held constant,    varied. 

• Resulting lobe pattern of 
quadrupolar axial Force is 
the same for all cylindrical 
test-masses—but lobes 
may have opposite signs.  
It is a figure of revolution 
about the z-axis (cylindrical 
symmetry). 

 Significant axial Force even 
when perturbing source-
mass is almost at right-
angles to axis thro’ CM of 
test-mass. 

 Gravitational quadrupolar 
Force can be repulsive.  

θ 

Quadrupolar axial Force, Fz 
(2) 

× (0) Axial Force = 

F z 
(2) 

• Arbitrary source-mass 
position. Unit source-mass. 
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The quadrupolar PE can be written as: - 

( )dVrxxD
V
∫ −= αββααβ δρ 23 are defined to be the nine elements of the 2nd rank 

symmetric mass quadrupole tensor; similarly…  
 

Quadrupolar coupling  

α,β 

where α, β = a, b, c, and 
                1  (α = β). 
   δαβ  =    
                         0 (α ≠ β). 

•  

( )dVxxrJ
V
∫ −= βααβαβ δρ 2

are the elements of a body’s tensor of inertia, [J]. 

 Relative to the body’s principal axes of inertia (here, labelled: 1, 2, and 3) [J] has only 3 
non-zero elements: J11 , J22 , and J33.   

cf. 
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 Therefore, if the body’s ‘ellipsoid of inertia’ is a sphere, then J11 = J22 = J33, and there 
can be no quadrupolar gravitational interaction with this body (*MacCullagh’s formula). 

 Relative to these same Principal Inertial axes the gravitational mass quadrupole tensor of any body 
can be written simply in terms of the principal moments of inertia of that body: - 

The mass quadrupole tensor 

*James MacCullach (1809–47) Irish mathematician and physicist. 

Presenter
Presentation Notes
Strathclyde contribution...
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• Quadrupolar  Force: 

The quadrupolar Force 

is the Constant of 
Gravitation. 
 
is the (column) 
position vector of the 
point P measured from 
the CM of the test-
mass, and 
is the corresponding 
transpose (row) vector. 
 
[mass × distance2] is 
the mass quadrupole 
moment of the test-
mass (2nd rank tensor 
array). 

[D] 

G 

A central Force  
thro’ the CM, but may be 
positive, 
zero, or 
negative. 

P 
source-mass 

Generally, a non-central Force. 

a scalar 

a vector 

     (Unit source-mass.) 

F (2) 

Presenter
Presentation Notes
The ‘mas’s within the force equations resides in the mass-quadrupole Tensor, [D] i(dim. Mass x distance-squared)
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Mass distribution around a suspended 
test-mass 

• Test-suspension at MIT 
(dummy test-mass). 

• Glasgow silica-fibre 
suspension. 

• Mechanical structure is 
necessarily in close 
proximity to the 
suspended test-mass 

– Does its mass fall 
inside the 
quadrupolar lobes ? 

– What is the relative 
size of the 
quadrupolar force ? 
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Local mass distribution example—the 
aLIGO suspension 
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Axial  Force on test-mass, F z 

Test-mass 

b = 0.26 m (Radius ). 
   = 0.14 m (Semi axial-length). 

Example: magnitude of ratio Fz   /Fz 
(2) (0) 

                         ; and 
this ratio  

• If the axial effect of a 
point perturbing 
source-mass is 
averaged over the 
spherical surface 
shown, having radius 

      R0 = 0.4 m, then 

 The ratio of the 
magnitude of the 
quadrupolar to 
monopolar axial 
gravitational forces  
is (in this example) 
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Impact of 1 nm Radial or Angular  
movement of 1 kg source-mass on az 

Radial movement of source Angular movement of source 
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n = 0: Monopole. 

n = 1: Quadrupole. 

n = 2: Hexadecapole. 

n = 3: 64-pole, etc. 
             . 
             . 
             . 

(Unit source-mass.) 

Full moment expansion for test-mass 

 Very fast, computationally. 
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Accuracy of the moment expansion 

1 kg source-mass on-axis: 
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Co-workers 
Alexey Veryaskin 
Xiaohui Xu 
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Conclusions 

If there are local gravitational sources perturbing the GW test-masses, their  

 axial effect will not be intuitively obvious; and the troublesome 

– Quadrupolar coupling is unlikely to be negligible out to distances > 0.4 m.        
However this form of Newtonian coupling 

– may be nulled through choice of test-mass dimensions (                  );  but 

– does this impact the test-mass coating noise adversely ? 

– Moment expansion is very useful (computationally fast). 

 If test-mass dimensions must be retained, can any local, potentially interfering 
structures, be placed in and around the known Newtonian axial-coupling 
‘notches’ of the test-masses ? 

 Can each test-mass have 6 (rather than 2) equally-spaced longitudinal ‘flats’ ?  
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