

" Performance of a thermally deformable mirror for correction of low-order beam aberrations"

Marie Kasprzack (LAL/EGO)

kasprzac@lal.in2p3.fr

GWADW Hawaii May 2012 - New Optics - Simulations and reality

1. Motivation

- 2. Prototype of a Thermally Deformable Mirror (TDM)
 - > Principle
 - Experimental setup
- 3. How to perform correction of low-order aberrations
 - Calculation of the correction
 - Zernike polynomials
 - > TDM properties
- 4. Performance of the TDM
 - > Experimental results
 - Actuation limits
 - > Possible improvements
- 5. Conclusion and perspectives

Motivation

EGO^{EUROPEAN} GRAVITATIONAL OBSERVATORY

→ Need of optimisation of the coupling by correction of optical aberrations due to thermal lensing in the system

[1] "Modematching feedback control for interferometers with an output mode cleaner" N. Smith-Lefebvre, N. Mavalvala, submitted for publication

First prototype of a Thermally Deformable Mirror (TDM)

Principle

Local temperature control of the substrate

Modification of the optical path length (OPL) according to^[2]:

[2] "Wavefront aberration compensation with thermally deformable mirror" B Canuel et al 2012 Class. Quantum Grav. **29** 085012

EGO^{EUROPEAN} GRAVITATIONAL OBSERVATORY

In-air experiment

- ► Laser beam @ 1064 nm
- Fused silica standard dielectric mirror 2"
- Resistors in contact with the HR coating of the mirror
- Phase measurement with a wavefront sensor (abs. accuracy rms λ/100)

1 mm

und de la construction de la con

 \rightarrow Local control of the wavefront by resistor actuation

Experimental setup

EGO GRAVITATIONAL

Mirror response

Experimental setup

EGO^{EUROPEAN} GRAVITATIONAL OBSERVATORY

Simulations by Finite Element Analysis

→ Good agreement with experimental results : possibility of modeling an ideal TDM

How to perform correction of low-order aberrations

→ Easy and fast calculation for correction of large number of Zernike modes

 \triangleright

TDM Properties

EGO GRAVITATIONAL OBSERVATORY

by the maximum value of actuation

Residual error

rms value of the residual error limited by the footprint of the actuators

- Induced focus
 - unwanted focus generated by this type of actuators, has to be removed

→ Characterisation of the TDM performance by ability to produce Zernike modes

TDM properties

EGO^{EUROPEAN} GRAVITATIONAL OBSERVATORY

TDM performances

 \rightarrow Value of the focus to remove from infinity to 100 m

GWADW Hawaii - May 2012 - Kasprzack

Losses and weightening Simulation results

> Matching requirements for the injection system of Advanced Virgo : Mode matching $\geq 99\%$

 \rightarrow Losses meet the requirements in the dynamic range of the first order aberrations

Possible improvements

Improvement of the dynamic range by:

- Better thermal contact
- Change substrate material
- Improvement of power coupling in the mirror substrate

Reduction of the residual rms value by:

- Increase of actuator density
- Improvement of homogeneity of the heating pattern

> First prototype under characterization

Innovative device with a lot of great advantages:

- Not limited by electronic noise
- Vacuum compatible
- Low cost and compatible with use of standard mirrors
- Possible correction of first Zernike modes with a good precision
- Next steps:Complete the experimental characterizationExperimental optimisation of cavity matchingTests under vacuum

Possible applications

- Injection system of Advanced Gravitational Wave Detectors
- Output mode cleaner optimisation of matching
- Optimised mode matching for squeezed light injection system