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Motivation  

 

 

   

 

 

 

 

 

 

 

  
 

 

 

 

 Need of optimisation of the coupling  by correction of optical aberrations due to 

thermal lensing in the system 

[1]  ” Modematching feedback control for interferometers with an output mode cleaner” 

N. Smith-Lefebvre, N. Mavalvala, submitted for publication 
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Injection system   

High power continous laser > 100 W 

Thermal lensing effects in the Input Mode 

Cleaner and the Faraday Isolator optics 

Distorsion of the laser beam fundamental mode 

Potential source of noise - Power losses :  

up to 10% mismatching onto the interferometer 

Advanced Virgo  

injection laser beam 

@1064 nm 

2.6 mm beam radius 

Estimated RoC 

variations: 200 m 
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Detection system 

Thermal lensing effects 

Mismatching onto the 

 Output Mode Cleaner[1] 

Advanced  

Gravitational 

Wave Detectors 
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First prototype of a  

Thermally Deformable Mirror 
(TDM) 
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Principle 
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Modification of the optical path length (OPL) according to[2]:  

 

 

 

 

 

 

 

 

 

 
 

        Array of  61 independently 

               controlled actuators 

Temperature 

local increase 

Thermo-optic 

coefficient  

Thermo-elastic 

coefficient  

Thermally deformable mirror 

Heater 

[2]“Wavefront aberration compensation with thermally deformable mirror” 

B Canuel et al 2012 Class. Quantum Grav. 29 085012 
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Local temperature control of the substrate  
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Experimental setup  
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 Laser beam @ 1064 nm 

 Fused silica standard dielectric mirror 2” 

 Resistors in contact with  

     the HR coating of the mirror 

 Phase measurement with a wavefront sensor  

 (abs. accuracy rms l/100) 

 

 

 

 

 

 

 
 

 

 

 

  Local control of the wavefront by resistor actuation 

Experimental phase images 

In-air experiment 

9 mm 

1 mm 

9
 m

m
 

1
 m

m
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Experimental setup 
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 Linearity with power 

 

 

 

 

 

 

 

 

 

 

 Time response of  a few seconds :   

 time constant ~ 4s and no hysteresis observed 

 

 Possible use of the TDM as an adaptive optics system 

Mirror response 
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Experimental images 

PtV = 21 nm 

rms =  2.9 nm 

PtV = 270 nm 

PtV = 270 nm 

Σ 

Σ 

Difference 

 Verification of the superposition principle 

Experimental actuation 

Calculated sum 

nm 

nm 
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 Temperature diffusion in the mirror  

 substrate for a heating surface of 1 mm²  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  Good agreement with experimental results : possibility of  modeling an ideal TDM 

Experimental setup 
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Temperature profile for 100 mW actuation 
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Intrinsic spatial  

Resolution HWHM  

~ 2mm 

Simulations by Finite Element Analysis 

Optical path difference (OPD) 

~  100 nm 

 Comparison of the OPD 

 between simulation and experiment 
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How to perform  

correction of low-order aberrations 
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Calculation of the correction 
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 Easy and fast calculation for correction of large number of Zernike modes 

Wavefront 

Sensor 

Computation of 

the correction 

TDM 
Distorted 

wavefront 

Corrected 

wavefront 

Interaction Matrix 

61 actuators x Zernike coefficients 

Use of the influence functions 

Distorted  

wavefront 

= x 

61 actuation  

values 

Open control loop in 

adaptive optics 

How to find the actuator values 
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TDM Properties 
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 Zernike polynomials 

 orthogonal basis to describe  

 the aberrations in spherical geometry 
 

 

 

 Performance described by : 
  

• Dynamic range  

 PtV amplitude of the zernike mode limited  

 by the maximum value of actuation 
  

• Residual error 

 rms value of the residual error limited by the footprint of the actuators 
  

• Induced focus 

 unwanted focus generated by this type of actuators, has to be removed 
 

  Characterisation of the TDM performance  by ability to produce Zernike modes 

 

 

Radial order 

5 

4 

3 

2 

1 

0 

Correction parameters 
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 Base of modes: 

  

 

 

 

 
 

 

 Comparison of each eigen mode with the corresponding Zernike 

• Purity = Indication of the ease to reproduce the Zernike mode  
 

 

 

 

 

 

 

 

 

 

 

  Choice of the pupil size according to the maximum value of the purity  

 

 

TDM  properties 

12 

Eigen modes of the mirror 

Ø = 14 mm 

 P = 0.76 
Ø = 12 mm 

P = 0.82 

Ø = 10 mm 

P = 0.87 

Ø = 8 mm 

P = 0.91 

Ø = 6 mm 

 P = 0.88 

Interaction Matrix 

Singular Value Decomposition 

= 

Eigen values 

Base of  

command modes 

Base of mirror 

deformation modes 

Example  

with mode 5 
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TDM performances 
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Experimental results 
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 Limited by sensor precision and by the spatial non uniformity of actuation  

 

Closed-loop on first Zernike modes 
Command Experiment 

PtV = 0.136 mm  

PtV = 0.142 mm  

  

PtV = 0.072 mm  

PtV = 0.099 mm  

rms = 4.4 nm  

rms = 3.2 nm  

rms = 12 nm  

rms = 4.3 nm 

PtV= 0.130 mm  

PtV = 0.140 mm  

  

PtV= 0.106 mm   

PtV = 0.106 mm  

  

PtV = 0.130 mm  

PtV = 0.140 mm  

PtV = 0.106 mm  

PtV = 0.106 mm  

rms = 1.1 nm   

rms  = 1.6 nm   

rms = 2 nm  

rms = 1.5 nm  
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Residual error Residual error 

Simulation of ideal TDM 

Correction image Correction image 
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Actuation limits 
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Possible amplitude of correction > 0.3 um for Zernike order 4 

Value of the focus to remove from infinity to 100 m 
 

 

Rms value of error vs. Amplitude of correction 

Simulation results 
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Actuation limits 
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 Matching requirements for the injection system of  Advanced Virgo :  

 Mode matching ≥ 99% 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Losses meet the requirements in the dynamic range of the first order aberrations 

 

Losses and weightening 

Simulation results  

Ability to correct an aberrated wavefront 
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Actuation limits 
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 Improvement of the dynamic range by: 

• Better thermal contact 

• Change substrate material 

• Improvement of power coupling in the mirror substrate  

  

 

 Reduction of the residual rms value by: 

• Increase of actuator density 

• Improvement of homogeneity of the heating pattern 

 

Possible improvements 
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Conclusion 
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 First prototype under characterization 

 Innovative device with a lot of great advantages: 

● Not limited by electronic noise 

● Vacuum compatible 

● Low cost and compatible with use of standard mirrors 

● Possible correction of first Zernike modes with a good precision 

  

 Next steps:  Complete the experimental characterization 

   Experimental optimisation of  cavity matching 

   Tests under vacuum 
    

 Possible applications  

● Injection system of Advanced Gravitational Wave Detectors 

● Output mode cleaner optimisation of matching 

● Optimised mode matching for squeezed light injection system 
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