Pulsar Timing Array Implementations: Noise Budget, Surveys, Timing, and Instrumentation Requirements

Jim Cordes (Cornell University)

Pulsar timing:

- how it works
- why it works
- how well <u>can</u> it work?

Noise budget:

Pulsar → Earth

Reaching PTA goals for GW astronomy:

- Optimizing timing
- Surveys for more pulsars

Overall instrumentation requirements

17 May 2012

Difficulties of GW Detection

- PTA: δt includes
- •Translational motion of the NS ~ 100 km/s
- •Orbital motions of the pulsar and observatory: 10s 100s km/s
- •Interstellar propagation delays: ns to seconds

The PTA Program

Goal

- Detect GWs at levels h~10⁻¹⁵ at f~1 yr⁻¹
 - Stochastic backgrounds (e.g. SMBH binaries, strings)
 - Continuous waves
 - Bursts (including bursts with memory)

Broad requirements

- Time 20 high-quality MSPs with < 100 ns rms precision over 5 to 10 yr for <u>detection</u>
- Wideband receivers at 1 to 2 GHz
- Confirmation and characterization of GWs: 50 MSPs
- Understanding the noise budget
- Galactic census for pulsars

~10⁴ MSPs in the Milky Way (also NS-NS binaries, MSPs, NS-BH binaries, GC pulsars)

Stochastic Background from SMBHs:

Correlation Function Between Pulsars

Example power-law spectrum from merging supermassive black holes (Jaffe & Backer 2003)

Correlation function of residuals vs angle between pulsars

Estimation errors from:

- dipole term from solar system ephemeris errors
- red noise in the pulsar clock
- red interstellar noise

Basics of Pulsars as Clocks

- Signal average M pulses
- Time-tag using template fitting

$$t_j = TOA + \delta TOA$$

 $\delta TOA \sim \frac{W}{S/N} \sim 0.1 \,\mu s to 1 \,ms$

- Repeat for L epochs spanning N=T/P spin periods
- $N \sim 10^8 10^{10}$ cycles in one year
- \Rightarrow P determined to $\delta P \sim \frac{\delta TOA}{N} \sim 10^{-16}$ to 10^{-14} s
- B1937+21: **P** = **0.0015578064924327±0.000000000000004** s
- J1909-3744: eccentricity < 0.00000013 (Jacoby et al.)

Fundamentals of Pulsar Timing

Clock Mechanism	Neutron Star Spin	 Differential rotation Crust quakes Torque variations in magnetosphere
Clock Ticks	Beamed radio emission at few x R _{NS}	 Variation of emission altitude with frequency Temporal variations (phase jitter)
Modification by ISM	Cold plasma dispersion law + Faraday rotation (deterministic & stochastic)	 Dispersive delays Refraction + diffraction Grav. Lensing, MW acceleration negligible
Telescope effects	Instrumental polarization, Radiometer noise	 TOA correction to SSBC Time transfer

Pulsar Clock Cycles and Perturbations

⁸

The clock is not perfect

Why Millisecond Pulsars?

Low intrinsic spin noise:

- Low magnetic fields (10⁸-10⁹ G)
 - \rightarrow long evolution times (> Gyr)
 - \rightarrow small torques

Small pulse widths (10s - 100s µs)

→ more accurate time-tagging

Small spin periods

- \rightarrow many pulses per unit telescope time
- → Some TOA errors ~ 1 / (Number of pulses)^{1/2}

Small magnetospheres (cP/2 π) \rightarrow inability for debris to enter and induce torque variations Millisecond pulsars with white-dwarf companions: dynamically clean

Post-fit Phase Residuals vs Spin Period

Potentially: BH companions, gwaves, etc.

FIGURE I Phase residual curves $\mathcal{R}_2(t)$ for 14 pulsars from the JPL sample of Downs and Reichley (1983). Spin periods P (seconds) and derivatives \dot{P} (in units of 10^{-15} s s⁻¹) are shown at the top of each panel.

Timing Error from Radiometer Noise

rms TOA error from template fitting with additive noise:

$$\begin{split} \Delta t_{\rm S/N} &= \frac{\left[\int \int dt \, dt' \, \rho(t-t') U'(t) U'(t')\right]^{1/2}}{{\rm SNR} \int dt \, [U'(t)]^2} = \frac{W_{\rm eff}}{{\rm SNR}} \left(\frac{\Delta}{W_{\rm eff}}\right)^{1/2} \\ {\rm Gaussian \ shaped \ pulse:} \\ \Delta t_{\rm S/N} &= \frac{W}{(2\pi \ln 2)^{1/4} {\rm SNR}_1 \sqrt{\rm N}} \left(\frac{\Delta}{W}\right)^{1/2} \\ \Delta t_{\rm S/N} &= 0.69 \mu s W_{\rm ms} N_6^{-1/2} {\rm SNR}_1^{-1} (\Delta/W)^{1/2} \end{split} \qquad \begin{array}{l} {\rm Low-DM \ pulsars:} \\ {\rm DISS \ (and \ RISS)} \\ {\rm will \ modulate} \\ {\rm SNR} \\ N_6 &= {\rm N} / \ 10^6 \\ \end{array}$$

Interstellar pulse broadening, when large, increases $\Delta t_{\text{S/N}}$ in two ways:

- SNR decreases by a factor W / $[W^2+T_d^2]^{1/2}$
- W increases to $[W^2+T_d^2]^{1/2}$

\rightarrow Large errors for high DM pulsars and low-frequency observations

Timing Error from Pulse-Phase Jitter

$$\begin{split} U(\phi) \propto \int d\phi' f_{\phi}(\phi') a(\phi - \phi') \\ \Delta t_{\rm J} &= N_i^{-1/2} (1 + m_I^2)^{1/2} P(\phi^2)^{1/2} \\ &= N_i^{-1/2} (1 + m_I^2)^{1/2} P\left[\int d\phi \, \phi^2 f_{\phi}(\phi)\right]^{1/2} \\ \bullet & f_{\phi} = \text{PDF of phase variation} \\ \bullet & a(\phi) = \text{individual pulse shape} \\ \bullet & N_i = \text{number of independent pulses summed} \\ \bullet & m_i = \text{intensity modulation index } \approx 1 \\ \bullet & f_{\rm J} = \text{fraction jitter parameter} = \phi_{\rm rms} / W \approx 1 \\ \hline \mathbf{Gaussian \ shaped \ pulse:} \\ \Delta t_{\rm J} &= \frac{f_J W_i (1 + m_I^2)^{1/2}}{2(2N_i \ln 2)^{1/2}} \qquad N_6 = N_i / 10^6 \\ \hline \Delta t_{\rm J} = 0.28 \mu s W_{i,\rm ms} N_6^{-1/2} \left(\frac{f_J}{1/3}\right) \left(\frac{1 + m_I^2}{2}\right) \end{split}$$

Propagation through the interstellar plasma

Refractive indices for cold, magnetized plasma

$$n_{\ell,r} \sim 1 -
u_p^2/2
u^2 \mp
u_p^2
u_{B_\parallel}/2
u^3$$
 $u \gg
u_p \sim 2 \,\mathrm{kHz} \qquad
u \gg
u_{B_\parallel} \sim 3 \,\mathrm{Hz}$

Propagation velocities are frequency dependent:

Dispersion Measure DM = $\int ds n_e$ units: pc cm⁻³ Rotation Measure RM = 0.81 $\int ds n_e B_{\parallel}$ units: rad m⁻²

A Single Dispersed Pulse from the Crab Pulsar

Interstellar Transfer Functions

$$\varepsilon_{\text{emitted}}(t) \longrightarrow \left[g_{\text{ism}}(t) \right] \longrightarrow \varepsilon_{\text{meas}}(t)$$

Dispersion:

$$g_{\rm ism}(t) \iff e^{ik(\omega)z}$$

For narrow bandwidths and nonuniform ISM

$$k(\omega)z \longrightarrow \omega^2 \mathrm{DM}$$

 $\label{eq:DM} \begin{array}{l} \text{DM} = dispersion \ measure} \\ \mathrm{DM} = \int_0^D \mathrm{dz} \, \mathrm{n}_e(\mathrm{z}) \\ \text{Routinely measured to < 1 part in 10^4} \end{array}$

Coherent Dedispersion

pioneered by Tim Hankins (1971)

Dispersion delays in the time domain represent a phase perturbation of the electric field in the Fourier domain:

$$\tilde{\varepsilon}_{\text{measured}}(\omega) = \tilde{\varepsilon}_{\text{emitted}}(\omega)e^{ik(\omega)z}$$

Coherent dedispersion involves multiplication of Fourier amplitudes by the inverse function,

$$e^{-ik(\omega)z}$$

For the non-uniform ISM the deconvolution filter has just one parameter (DM)

The algorithm consists of $\varepsilon_{\text{emitted}} \approx \text{IFT} \left\{ \text{FT} \left\{ \varepsilon_{\text{measured}} \right\} e^{-ik(\omega)z} \right\}$

Application requires very fast sampling to achieve usable bandwidths.

TOA Variations from electron density variations

Electron density irregularities from ~100s km to Galactic scales

$$\phi_d = -\lambda r_e \int_{\text{LOS}} ds \, n_e(s)$$
$$n_e = \overline{n}_e + \delta n_e$$
$$\Delta t_{\text{DM}} = \frac{\phi_d}{2\pi\nu} \propto \frac{\text{DM}}{\nu^2} \longleftarrow$$

Trivial to correct if DM from mean electron density were the only effect!

Stochasticity of the PBF

Coherent Deconvolution of Scattering Broadening

The impulse response for scattering $g_{scattering}(t)$ is of the form of envelope x noise process

The noise process (from constructive/destructive interference) is constant over time scales ~100 s to hours.

Algorithms being developed for extracting $g_{scattering}(t)$ to allow deconvolution and TOA correction

Refraction in the ISM

- Phase gradient in screen:
 - refraction of incident radiation
 - yields change in angle of arrival (AOA)
- Two timing perturbations:

$$t_{\rm AOA} = \frac{1}{2c} D_{\rm eff} \theta_r^2 \approx 1.21 \ \mu s \ D_{\rm eff}(\rm kpc) \theta_r^2(\rm mas)$$

$$D_{
m eff} = (D - D_s) \left(rac{D}{D_s}
ight)$$

error in correction to SSBC

 $\Delta t_{\text{AOA,Bary}} = c^{-1} \hat{n} \cdot \mathbf{r}_{\oplus} \approx c^{-1} r_{\oplus} \theta_r(t) \cos \Phi(t) \approx 2.4 \ \mu s \ \theta_r(\text{mas}) \cos \Phi(t)$

- Phase curvature in screen:
 - refractive intensity variation (RISS)
 - change in shape of ray bundle
 - change in pulse broadening, C₁

Timing Budget (short list)

Spin Noise	≤ 100 ns	Selected MSPs over 5 years	20 µs worst MSP Seconds worst CP
Pulse jitter	100 ns / N ₆ ^{-1/2}	~ pulse width	~ λ independent, S/N independent
Interstellar Medium	δDM(t) Scattering broadening Refraction Scintillations	10 – 100 μs < 1 μs < 1 μs < 0.1 μs	Correctable ~ λ^2 Correctable ~ λ^4 Correctable ~ λ^2, λ^4 Partly correctable, ~ λ^4
Radiometer Noise	< 0.1 µs	$\propto rac{W}{\mathrm{S/N}} \cdot rac{T_{\mathrm{sys}}}{T_{\mathrm{psr}}}$	Integrate longer, narrower pulses, greater sensitivity
Template fitting errors	~ µs	λ-dependent pulse shapes	Correctable
Faraday rotation	< few ns	$\propto \lambda^2 { m RM}$	
Time transfer	< 10 ns		

Long-term Goal: Full Galactic Census

$N_{\text{detectable}} = f_b \times R \times T_{\text{radio}}$	f_b = beamin	ng fraction	
	R = birthrace	ite 700	
	$T_{\rm radio} = {\rm radioe}$	mitting lifetime	
~ 0.2 x 10 ⁻² yr ⁻¹ x 10 ⁷ yr	= 2 x 10 ⁴	Canonical pulsars	
~ 0.2 x 10 ⁻⁴ yr ⁻¹ x 10 ⁹ yr	= 2 x 10 ⁴	Millisecond pulsars	
~ 0.2 x 10 ^{-4.5±0.5} yr ⁻¹ x 10 ⁸ yr	= 200 to 2000	NS-NS binaries	
~ 10% x NS-NS binaries	= 20 to 200	NS-BH binaries	

All-sky surveys with existing radio telescopes, SKA precursors, and eventually the SKA can find a large fraction of pulsars

SKA = Square Kilometer Array

Summary

- Timing precision for millisecond pulsars has been demonstrated to be sufficient eventual GW detection:
 – 30 ns rms over 5 yr for three objects
- Work needed to characterize the noise budget (astrophysical and instrumental) for σ_{TOA} < 100 ns for a large sample of MSPs
- A larger sample of MSPs ensures greater sensitivity by exploiting the correlated signal produced by GWs
- A full Galactic census will provide the best MSPs
- Long-term timing may require a dedicated timing telescope: antenna array vs. large single reflector?
 – E.g. 100-300 m equivalent in the southern hemisphere