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Notes on semi-analytically estimating the Hough-on-F-stat sensitivity of the E@H run S5R5.

I. ESTIMATING SENSITIVITY OF HOUGH-ON-F STATISTIC

We derive an estimate for the sensitivity of the Hough-on-F statistic [1] used in the E@H seach S5R5. This builds on
the sensitivity-estimation methods developed in [2] and [3], adapted to the non-χ2 distributed Hough-on-F statistic.

The Hough-on-F statistic is defined as the number n ≤ N out of a total of N segments where the F-statistic value
in a template λ crossed a predefined threshold Fth. The phase parameters λ of the templates include the sky-position
~n, frequency f , and higher-order frequency derivatives ḟ , f̈ , . . ..

The statistic 2Fk in segment k for signals in Gaussian noise follows a χ2-distribution with 4 dof and non-centrality
parameter ρ2

k, i.e.

P (2F|ρk) = χ2
4(2F ; ρ2

k) , (1)

where ρk = ρk(λs, λ) is the expected SNR in segment k of a signal with phase parameters λs when the closest (coarse-
grid) template is in λ. This can be expressed in terms of the perfectly-matched SNR ρopt,k ≡ ρk(λs, λs) by introducing

the per-segment mismatch µk(λs, λ) as

ρ2
k(λs, λ) = [1− µk(λs, λ)] ρopt

2
,k . (2)

The probability of a threshold-crossing in segment k is therefore

P (Fk > Fth|ρk) =

∫ ∞
2Fth

χ2
4(2F ; ρ2

k) d(2F) = 1− cdf χ2
4(2Fth; ρ2

k) . (3)

Note that the per-segment SNR ρk will not be exactly constant across segments, for several reasons:

(i) the closest template λ to λs will generally be different in every segment, and be subject to a different metric
mismatch function µk.

(ii) The optimal SNR ρopt,k in general varies over segments as a function of their start-time (except if the start-times

or segment-lengths are multiples of a sidereal day) due to the time-varying antenna-pattern.

(iii) in case of non-stationary noise, ρopt,k further varies over segments as a function of the noise-PSD for that segment

Sk.

(iv) ρopt,k varies as a function of the amount of data ∆Tdata,k used per segment k.

where the antenna-pattern variation (ii) should be very small for the E@H run S5R5 as ∆T = 25 hours, and we also
don’t expect large noise-floor variations (iii) in Sk over different segments.

However, in order to be able to continue we have to approximate the per-segment SNR as constant, i.e. ρk ≈ ρ̄,
which we write as

ρ̄2 = [1− µ̄] ρ2
opt . (4)

We define the per-template per-segment threshold-crossing probability pρ̄ in the presence of a signal with constant
per-segment SNR ρ̄ as

pρ̄(Fth; ρ̄) ≡ P (F > Fth|ρ̄) = 1− cdf χ2
4(2Fth; ρ̄2) , (5)

and consequently the per-template per-segment false-alarm probability is p0(Fth) ≡ P (F > Fth|ρ̄ = 0).
Given pρ̄, we can express the (discrete) probability distribution for the Hough number count n as

P (n|N, pρ̄) =

(
N

n

)
pnρ̄ (1− pρ̄)N−n . (6)

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=92001
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The overall Hough false-alarm and false-dismissal probabilities are therefore

pHfA(nth,Fth) = P (n ≥ nth|Fth, ρ̄ = 0) =

N∑
n=nth

P (n|N, p0) , (7)

pHfD(nth,Fth, ρ̄) = P (n < nth|Fth, ρ̄) =

nth−1∑
n=0

P (n|N, pρ̄) . (8)

Estimating the sensitivity of a search typically consists of injecting signals drawn from a population Πh0 with
fixed h0, and determining the overall false-dismissal probability pHfD for this population for a fixed threshold n∗th,

corresponding to a certain false-alarm probability pHfA
∗
. The amplitude parameter h0 is varied until a desired confidence

level 1 − pHfD
∗

is obtained, and the corresponding signal amplitude h∗0 = h0(pHfA
∗
, pHfD

∗
) is considered a measure for

the sensitivity of the search. This critical amplitude is the solution to the equation

pHfD
∗

= P (n < n∗th|Fth, h
∗
0,Πh0

) , (9)

for given threshold Fth and fixed-h0 signal population Πh0
.

Following the notation of [2, 4, 5], we can write the optimal (per-segment) SNR ρopt of a perfectly-matched template
(λ = λs) as

ρopt = ρ̂(h0)R(θ) , (10)

where θ ≡ {cos ι, ψ, ~n}, and R(θ) denotes the geometric antenna-pattern response of the detector network to a GW
from direction ~n with amplitude parameters {cos ι, ψ}. Using the notation of Eq. (95) in [5], we can write the response
function explicitly as

R2(θ) =
25

4
(α1A+ α2B + 2α3 C) , (11)

where αi = αi(cos ι, ψ) and A,B,C are functions of sky-position ~n (and, generally, data segment k).
For an all-sky search, the signal population Πh0

consists of an isotropic distribution over the sky ~n, and uniform
distributions over cos ι ∈ [−1, 1] and ψ ∈ [−π/4, π/4], and one can show in general [5] that 〈R2〉θ = 1. Following [2]
we introduce the optimal per-segment “rms SNR” ρ̂ of the signal population Πh0 , namely

ρ̂ ≡
√
〈ρ2

opt〉θ =
2

5
h0

√
Tdata/N

S
, (12)

we S is the overall noise floor, defined as the harmonic mean

S−1 ≡ 1

NSFT

NSFT∑
Xα

S−1
Xα , (13)

over the total number NSFT of SFTs (over all segments), SXα is the per-SFT noise PSD for detector X and time-index
α, while

Tdata ≡ NSFT TSFT , (14)

is the total amount of data used (over all segments)1.
The unknown signal location λs gives rise to a (template-bank dependent) probability distribution for the mismatch

µ̄, which affects the measured (average) per-segment SNR ρ̄ as seen in (4). We can absorb this effect by introducing
an ’effective’ response Reff(θ; µ̄) which includes the (unknown) mismatch µ̄:

Reff(θ; µ̄) ≡ [1− µ̄(λs)] R(θ) , (15)

1 Under “ideal” data conditions of Ndet detectors with identical stationary noise-floor SXα = Sn without gaps, we have S = Sn, and
Tdata = Ndet N ∆T .
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which allows us to express the (per-segment) SNR ρ̄ using Eqs. (10) and (4) as

ρ̄ = ρ̂(h0)Reff(θ; µ̄) . (16)

The sensitivity equation (9) can be written more explicitly as [2]:

pHfD
∗

=

∫
P (n < n∗th|Fth, ρ̄ = ρ̂∗Reff) P (Reff |Πh0) dReff , (17)

where the threshold on number-count n∗th = nth(pHfA
∗
, N) is obtained by inverting Eq. (7).

This equation is to be solved for the minimal “rms-SNR” ρ̂∗, which we can translate into a minimum signal amplitude
h∗0 using Eq. (12):

h∗0 =
5

2
ρ̂∗
√

S
∆Tdata

, (18)

where ∆Tdata ≡ Tdata/N .

A. Possible conventions for expressing sensitivity statements

• Karl has proposed [2] to use ρ̂∗ directly to characterize the sensitivity of a search.

• Map has used a functional form inspired by the Hough paper (Eq.6.41) in [1]):

h∗0 =
F

N1/4

√
S

∆Tdata
, (19)

namely F ≡ 5/2ρ̂∗N1/4.

• We propose to standardize sensitivity statements with respect to only “global” properties of the search, namely
S and Tdata, and absorb all “internal” search properties (e.g. N,∆T, µ̄, . . .) into the sensitivity pre-factor. This
could be done either as

h∗0 = H

√
S

Tdata
, (20)

where H ≡ 5/2 ρ̂∗
√
N .

This is in analogy to what was done for fully-coherent searches (e.g. H = 11.4 for a targeted F -statistic search
with p∗fA = 0.01 and p∗fD = 0.1 [6]).

• One could even absorb all search-specific parameters (including Tdata) into a single “sensitivity factor” σh (with

dimensions of
√
Sn, i.e.

√
Hz
−1

), and express

h∗0 =

√
S
σh

, (21)

where σ−1
h ≡ 5/2ρ̂∗∆T

−1/2
data . This latter definition has the advantage of quantifying the overall “intrinsic”

sensitivity of the search, independently of the detector noise level
√
S.

B. Biased sensitivity approximation

Note that we can equivalently express Eq. (17) in the form of an average, namely

pHfD
∗

= 〈P (n < n∗th|Fth, ρ̄ = ρ̂∗Reff)〉Πh0
. (22)

A simpler (but biased) sensitivity approximation (used in [1]) proceeds by solving instead

pHfD
∗

= P
(
n < n∗th|Fth, ρ̄

2 = ˜̂ρ∗2 〈R2
eff〉Πh0

)
, (23)

https://wiki.ligo.org/CW/AnalyticalApproximationToS5R5ULs
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FIG. 1: Effective F-statistic mismatch distribution in SNR, P (µ̄|I).

where the averaging refers to the assumed signal population Πh0 . The difference is simply whether to compute the
false-dismissal probability for the average SNR2, or the average of the false-dismissal probability as a function of
SNR2. If P (n < nth|ρ̄) (which is always monotonically decreasing with ρ̄) is a convex function of ρ̄ (which won’t
always be the case), then Jensen’s inequality states that

P
(
n < nth|ρ̂2 〈R2

eff〉
)
≤ 〈P

(
n < nth|ρ̂2R2

eff

)
〉 , (24)

and so one would expect ˜̂ρ∗ ≤ ρ̂∗ for the solutions of (22) and (23), respectively. This corresponds to the biased
sensitivity approximation under-estimating h∗0 and therefore over-estimating the sensitivity of the search.

Further approximations used [1] to solve Eqs. (7) and (8) for ρ̄∗ are: (i) approximate the χ2-distributions with
Gaussians, and (ii) Taylor-expand in small per-segment SNR ρ̄. In [3] we refer to this as the “weak-signal Gaussian”

limit. With these approximations, and using 〈R2
eff〉 = 1 − 〈µ̄〉, one can solve Eq. (8) for ˜̂ρ∗

√
1− 〈µ̄〉, and then use

Eq. (18) to obtain the minimal signal amplitude h∗0.
Apart from the bias introduced by (23), the “weak-signal Gaussian” approximation was found [3] to be rather

unreliable for small false-alarm probabilities pHfA and segment numbers in the range N <∼ 103. We therefore continue

with a more exact approach pioneered in [2].

C. Unbiased semi-analytical sensitivity estimation

We can numerically generate the probability distribution P (Reff |Πh0
) for the effective response via Monte-Carlo

simulation of the assumed signal- and mismatch distributions. Note that P (R|Πh0
) is fully specified in terms of the

antenna-pattern response of the detectors for the given signal population. However, we need to prescribe an ad-hoc
mismatch-distribution P (µ̄|I) for the Hough-on-F stat search grids. Drawing values for Reff is achieved by drawing
R and µ̄ independently, and computing Reff = (1− µ̄)R.

Given a probability distribution P (Reff |Πh0
) we can numerically solve the integral in Eq. (17) for ρ̂∗. Karl has

coded this up in octapps, and using this framework we arrive at the following sensitivity estimate.

II. ESTIMATING S5R5 SENSITIVITY

In order to estimate the sensitivity, we use the S5R5 parameters: N = 121, Fth = 2.6. The quoted sensitivity refers
to a 90% confidence level, corresponding to pHfD

∗
= 0.1.
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FIG. 2: Predicted sensitivity factor H as a function of frequency.

The two input parameters that need to be specified are the false-alarm probability pHfA
∗
, and the effective F-statistic

mismatch distribution in SNR, P (µ̄|I):

• The false-alarm probability can equivalently be expressed as a number-count threshold nth, for which we use
the values of the loudest candidates found in the S5R5 post-processing, e.g. see Fig. 3 in the E@H S5R5 paper.
We use nth ∈ [70, 76] in the table below, which roughly covers the ±3σ range in nth.

• We use the mismatch distribution obtained by Miroslav from his follow-up pipeline. The distribution has mean
〈µ̄〉 ≈ 0.61 and standard deviation σµ̄ ≈ 0.15.

Running S5R5Sensitivity.m2 which uses octapps3, we obtain the following result:

Number-count thresholds nth 70 71 72 73 74 75 76

False-alarm probabilities pHfA
∗

6.0e-13 1.6e-13 3.9e-14 9.4e-15 2.2e-15 5.0e-16 1.1e-16

[Biased (naive) estimate] ρ̂∗0 2.6 2.7 2.7 2.7 2.7 2.8 2.8

Mean SNR ρ̂∗ 5.1 5.2 5.3 5.4 5.4 5.5 5.6

Map’s F-factor F 42.5 43.1 43.8 44.5 45.2 45.8 46.5

Sensitivity factor H 140.8 143.1 145.3 147.5 149.8 152.0 154.2

Sensitivity scale [s1/2] σh 31.0 30.5 30.0 29.6 29.1 28.7 28.3

A. Predicting the S5R5 upper limits

To predict the h0 upper limits obtained by the S5R5 search, we additionally need:

• The number count threshold nth in every 0.5 Hz frequency band for which upper limits are quoted. These
were supplied by Paola as significances/critical ratios CR, which were converted to number counts using nth =
σCR + 〈nth〉, with σ = 4.8 and 〈nth〉 = N(1 + Fth)e−Fth . This gave 31 distinct values of nth, ranging from 69
to 120.

2 git-version a84e432abebdff6e800861caff59380cec0fde0d-CLEAN
3 git-version 8c592f0ea8084e77f6fbf9e0ffc54ff3d19a9133-CLEAN
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• The noise floor S, harmonically averaged over SFTs and detectors; this was supplied by Map and Paola.

For each 0.5 Hz frequency band, we calculate the sensitivity factor H using the appropriate nth. Then using the
mean noise floor S in the 0.5 Hz band, and Eq. (20), we calculate a prediction for h0. The predicted sensitivity factors
H are plotted as a function of frequency in Fig. 2.
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