# Estimating sensitivity of the Einstein@Home search S5R5

R. Prix, K. Wette

(Dated: Thu May 31 11:42:49 2012 +0200)

(commit ID: bd 800542426b91ece 4a0dbb 05456c0 2e 2e f 0160d-CLEAN)

(DCC: LIGO-T1200272-v1)

Notes on semi-analytically estimating the Hough-on- $\mathcal{F}$ -stat sensitivity of the E@H run S5R5.

#### I. ESTIMATING SENSITIVITY OF HOUGH-ON- $\mathcal F$ STATISTIC

We derive an estimate for the sensitivity of the Hough-on- $\mathcal{F}$  statistic [1] used in the E@H seach S5R5. This builds on the sensitivity-estimation methods developed in [2] and [3], adapted to the **non**- $\chi^2$  distributed Hough-on- $\mathcal{F}$  statistic.

The Hough-on- $\mathcal{F}$  statistic is defined as the number  $n \leq N$  out of a total of N segments where the  $\mathcal{F}$ -statistic value in a template  $\lambda$  crossed a predefined threshold  $\mathcal{F}_{\text{th}}$ . The phase parameters  $\lambda$  of the templates include the sky-position  $\vec{n}$ , frequency f, and higher-order frequency derivatives  $f, \ddot{f}, \ldots$ 

 $\vec{n}$ , frequency f, and higher-order frequency derivatives  $\dot{f}, \ddot{f}, \ldots$ . The statistic  $2\mathcal{F}_k$  in segment k for signals in Gaussian noise follows a  $\chi^2$ -distribution with 4 dof and non-centrality parameter  $\rho_k^2$ , i.e.

$$P\left(2\mathcal{F}|\rho_k\right) = \chi_4^2(2\mathcal{F};\rho_k^2)\,,\tag{1}$$

where  $\rho_k = \rho_k(\lambda_s, \lambda)$  is the expected SNR in segment k of a signal with phase parameters  $\lambda_s$  when the closest (coarse-grid) template is in  $\lambda$ . This can be expressed in terms of the perfectly-matched SNR  $\rho_{\text{opt},k} \equiv \rho_k(\lambda_s, \lambda_s)$  by introducing the per-segment mismatch  $\mu_k(\lambda_s, \lambda)$  as

$$\rho_k^2(\lambda_s, \lambda) = [1 - \mu_k(\lambda_s, \lambda)] \rho_{\text{opt } k}. \tag{2}$$

The probability of a threshold-crossing in segment k is therefore

$$P\left(\mathcal{F}_{k} > \mathcal{F}_{\text{th}} \middle| \rho_{k}\right) = \int_{2\mathcal{F}_{\text{th}}}^{\infty} \chi_{4}^{2}(2\mathcal{F}; \rho_{k}^{2}) d(2\mathcal{F}) = 1 - \operatorname{cdf} \chi_{4}^{2}(2\mathcal{F}_{\text{th}}; \rho_{k}^{2}). \tag{3}$$

Note that the per-segment SNR  $\rho_k$  will not be exactly constant across segments, for several reasons:

- (i) the closest template  $\lambda$  to  $\lambda_s$  will generally be different in every segment, and be subject to a different metric mismatch function  $\mu_k$ .
- (ii) The optimal SNR  $\rho_{\text{opt},k}$  in general varies over segments as a function of their start-time (except if the start-times or segment-lengths are multiples of a sidereal day) due to the time-varying antenna-pattern.
- (iii) in case of non-stationary noise,  $\rho_{\text{opt},k}$  further varies over segments as a function of the noise-PSD for that segment  $S_k$ .
- (iv)  $\rho_{\text{opt }k}$  varies as a function of the amount of data  $\Delta T_{\text{data},k}$  used per segment k.

where the antenna-pattern variation (ii) should be very small for the E@H run S5R5 as  $\Delta T = 25$  hours, and we also don't expect large noise-floor variations (iii) in  $S_k$  over different segments.

However, in order to be able to continue we have to approximate the per-segment SNR as constant, i.e.  $\rho_k \approx \bar{\rho}$ , which we write as

$$\bar{\rho}^2 = [1 - \bar{\mu}] \rho_{\text{opt}}^2. \tag{4}$$

We define the per-template per-segment threshold-crossing probability  $p_{\bar{\rho}}$  in the presence of a signal with constant per-segment SNR  $\bar{\rho}$  as

$$p_{\bar{\rho}}(\mathcal{F}_{\rm th}; \bar{\rho}) \equiv P\left(\mathcal{F} > \mathcal{F}_{\rm th} | \bar{\rho}\right) = 1 - \operatorname{cdf} \chi_4^2(2\mathcal{F}_{\rm th}; \bar{\rho}^2), \tag{5}$$

and consequently the per-template per-segment false-alarm probability is  $p_0(\mathcal{F}_{\rm th}) \equiv P(\mathcal{F} > \mathcal{F}_{\rm th} | \bar{\rho} = 0)$ . Given  $p_{\bar{\rho}}$ , we can express the (discrete) probability distribution for the Hough number count n as

$$P(n|N, p_{\bar{\rho}}) = \binom{N}{n} p_{\bar{\rho}}^{n} (1 - p_{\bar{\rho}})^{N-n}.$$
(6)

The overall Hough false-alarm and false-dismissal probabilities are therefore

$$p_{f_{A}}^{H}(n_{\text{th}}, \mathcal{F}_{\text{th}}) = P(n \ge n_{\text{th}}|\mathcal{F}_{\text{th}}, \bar{\rho} = 0) = \sum_{n=n_{\text{th}}}^{N} P(n|N, p_{0}),$$
 (7)

$$p_{f_{\rm D}}^{H}(n_{\rm th}, \mathcal{F}_{\rm th}, \bar{\rho}) = P(n < n_{\rm th} | \mathcal{F}_{\rm th}, \bar{\rho}) = \sum_{n=0}^{n_{\rm th}-1} P(n | N, p_{\bar{\rho}})$$
 (8)

Estimating the sensitivity of a search typically consists of injecting signals drawn from a population  $\Pi_{h_0}$  with fixed  $h_0$ , and determining the overall false-dismissal probability  $p_{f_{\rm D}}^H$  for this population for a fixed threshold  $n_{\rm th}^*$ , corresponding to a certain false-alarm probability  $p_{f_{\rm A}}^H$ . The amplitude parameter  $h_0$  is varied until a desired confidence level  $1-p_{f_{\rm D}}^H$  is obtained, and the corresponding signal amplitude  $h_0^*=h_0(p_{f_{\rm A}}^H,p_{f_{\rm D}}^H)$  is considered a measure for the sensitivity of the search. This critical amplitude is the solution to the equation

$$p_{f_{\rm D}}^{H^*} = P\left(n < n_{\rm th}^* | \mathcal{F}_{\rm th}, h_0^*, \Pi_{h_0}\right),$$
 (9)

for given threshold  $\mathcal{F}_{th}$  and fixed- $h_0$  signal population  $\Pi_{h_0}$ .

Following the notation of [2, 4, 5], we can write the optimal (per-segment) SNR  $\rho_{\rm opt}$  of a perfectly-matched template  $(\lambda = \lambda_{\rm s})$  as

$$\rho_{\text{opt}} = \hat{\rho}(h_0) \, \mathcal{R}(\theta) \,, \tag{10}$$

where  $\theta \equiv \{\cos \iota, \psi, \vec{n}\}$ , and  $\mathcal{R}(\theta)$  denotes the geometric antenna-pattern response of the detector network to a GW from direction  $\vec{n}$  with amplitude parameters  $\{\cos \iota, \psi\}$ . Using the notation of Eq. (95) in [5], we can write the response function explicitly as

$$\mathcal{R}^{2}(\theta) = \frac{25}{4} \left( \alpha_{1} A + \alpha_{2} B + 2\alpha_{3} C \right) , \tag{11}$$

where  $\alpha_i = \alpha_i(\cos \iota, \psi)$  and A, B, C are functions of sky-position  $\vec{n}$  (and, generally, data segment k).

For an all-sky search, the signal population  $\Pi_{h_0}$  consists of an isotropic distribution over the sky  $\vec{n}$ , and uniform distributions over  $\cos \iota \in [-1,1]$  and  $\psi \in [-\pi/4,\pi/4]$ , and one can show in general [5] that  $\langle \mathcal{R}^2 \rangle_{\theta} = 1$ . Following [2] we introduce the optimal per-segment "rms SNR"  $\hat{\rho}$  of the signal population  $\Pi_{h_0}$ , namely

$$\hat{\rho} \equiv \sqrt{\langle \rho_{\text{opt}}^2 \rangle_{\theta}} = \frac{2}{5} h_0 \sqrt{\frac{T_{\text{data}}/N}{S}}, \qquad (12)$$

we S is the overall noise floor, defined as the harmonic mean

$$S^{-1} \equiv \frac{1}{N_{\text{SFT}}} \sum_{X\alpha}^{N_{\text{SFT}}} S_{X\alpha}^{-1}, \tag{13}$$

over the total number  $N_{\text{SFT}}$  of SFTs (over all segments),  $S_{X\alpha}$  is the per-SFT noise PSD for detector X and time-index  $\alpha$ , while

$$T_{\rm data} \equiv N_{\rm SFT} T_{\rm SFT} \,, \tag{14}$$

is the total amount of data used (over all segments) $^{1}$ .

The unknown signal location  $\lambda_s$  gives rise to a (template-bank dependent) probability distribution for the mismatch  $\bar{\mu}$ , which affects the measured (average) per-segment SNR  $\bar{\rho}$  as seen in (4). We can absorb this effect by introducing an 'effective' response  $\mathcal{R}_{\text{eff}}(\theta; \bar{\mu})$  which includes the (unknown) mismatch  $\bar{\mu}$ :

$$\mathcal{R}_{\text{eff}}(\theta; \bar{\mu}) \equiv [1 - \bar{\mu}(\lambda_{s})] \, \mathcal{R}(\theta) \,, \tag{15}$$

<sup>&</sup>lt;sup>1</sup> Under "ideal" data conditions of  $N_{\text{det}}$  detectors with identical stationary noise-floor  $S_{X\alpha} = S_{\text{n}}$  without gaps, we have  $S = S_{\text{n}}$ , and  $T_{\text{data}} = N_{\text{det}} N \Delta T$ .

which allows us to express the (per-segment) SNR  $\bar{\rho}$  using Eqs. (10) and (4) as

$$\bar{\rho} = \hat{\rho}(h_0) \, \mathcal{R}_{\text{eff}}(\theta; \bar{\mu}) \,. \tag{16}$$

The sensitivity equation (9) can be written more explicitly as [2]:

$$p_{f_{D}}^{H*} = \int P\left(n < n_{\text{th}}^{*} | \mathcal{F}_{\text{th}}, \ \bar{\rho} = \hat{\rho}^{*} \mathcal{R}_{\text{eff}}\right) P\left(\mathcal{R}_{\text{eff}} | \Pi_{h_{0}}\right) d\mathcal{R}_{\text{eff}}, \tag{17}$$

where the threshold on number-count  $n_{\rm th}^* = n_{\rm th}({p_{f_{\rm A}}^H}^*, N)$  is obtained by inverting Eq. (7). This equation is to be solved for the minimal "rms-SNR"  $\hat{\rho}^*$ , which we can translate into a minimum signal amplitude  $h_0^*$  using Eq. (12):

$$h_0^* = \frac{5}{2} \,\hat{\rho}^* \sqrt{\frac{\mathcal{S}}{\Delta T_{\text{data}}}} \,, \tag{18}$$

where  $\Delta T_{\rm data} \equiv T_{\rm data}/N$ .

## Possible conventions for expressing sensitivity statements

- Karl has proposed [2] to use  $\hat{\rho}^*$  directly to characterize the sensitivity of a search.
- Map has used a functional form inspired by the Hough paper (Eq.6.41) in [1]):

$$h_0^* = \frac{F}{N^{1/4}} \sqrt{\frac{S}{\Delta T_{\text{data}}}}, \tag{19}$$

namely  $F \equiv 5/2\hat{\rho}^* N^{1/4}$ .

• We propose to standardize sensitivity statements with respect to only "global" properties of the search, namely S and  $T_{\text{data}}$ , and absorb all "internal" search properties (e.g.  $N, \Delta T, \bar{\mu}, \ldots$ ) into the sensitivity pre-factor. This could be done either as

$$h_0^* = H\sqrt{\frac{S}{T_{\text{data}}}},\tag{20}$$

where  $H \equiv 5/2 \,\hat{\rho}^* \sqrt{N}$ .

This is in analogy to what was done for fully-coherent searches (e.g. H = 11.4 for a targeted F-statistic search with  $p_{f_{\rm A}}^* = 0.01$  and  $p_{f_{\rm D}}^* = 0.1$  [6]).

• One could even absorb all search-specific parameters (including  $T_{\rm data}$ ) into a single "sensitivity factor"  $\sigma_h$  (with dimensions of  $\sqrt{S_n}$ , i.e.  $\sqrt{\text{Hz}}^{-1}$ ), and express

$$h_0^* = \frac{\sqrt{S}}{\sigma_L},\tag{21}$$

where  $\sigma_h^{-1} \equiv 5/2\hat{\rho}^* \Delta T_{\rm data}^{-1/2}$ . This latter definition has the advantage of quantifying the overall "intrinsic" sensitivity of the search, independently of the detector noise level  $\sqrt{S}$ .

#### Biased sensitivity approximation

Note that we can equivalently express Eq. (17) in the form of an average, namely

$$p_{f_{\rm D}}^{H^*} = \langle P(n < n_{\rm th}^* | \mathcal{F}_{\rm th}, \ \bar{\rho} = \hat{\rho}^* \mathcal{R}_{\rm eff}) \rangle_{\Pi_{h_0}}.$$
 (22)

A simpler (but biased) sensitivity approximation (used in [1]) proceeds by solving instead

$$p_{f_{\rm D}}^{H^*} = P\left(n < n_{\rm th}^* | \mathcal{F}_{\rm th}, \ \bar{\rho}^2 = \tilde{\hat{\rho}}^{*2} \langle \mathcal{R}_{\rm eff}^2 \rangle_{\Pi_{h_0}}\right),$$
 (23)



FIG. 1: Effective  $\mathcal{F}$ -statistic mismatch distribution in SNR,  $P(\bar{\mu}|I)$ .

where the averaging refers to the assumed signal population  $\Pi_{h_0}$ . The difference is simply whether to compute the false-dismissal probability for the average SNR<sup>2</sup>, or the average of the false-dismissal probability as a function of SNR<sup>2</sup>. If  $P(n < n_{\rm th}|\bar{\rho})$  (which is always monotonically decreasing with  $\bar{\rho}$ ) is a *convex* function of  $\bar{\rho}$  (which won't always be the case), then Jensen's inequality states that

$$P\left(n < n_{\rm th} | \hat{\rho}^2 \langle \mathcal{R}_{\rm eff}^2 \rangle\right) \le \langle P\left(n < n_{\rm th} | \hat{\rho}^2 \mathcal{R}_{\rm eff}^2 \right) \rangle, \tag{24}$$

and so one would expect  $\hat{\rho}^* \leq \hat{\rho}^*$  for the solutions of (22) and (23), respectively. This corresponds to the biased sensitivity approximation under-estimating  $h_0^*$  and therefore over-estimating the sensitivity of the search.

Further approximations used [1] to solve Eqs. (7) and (8) for  $\bar{\rho}^*$  are: (i) approximate the  $\chi^2$ -distributions with Gaussians, and (ii) Taylor-expand in small per-segment SNR  $\bar{\rho}$ . In [3] we refer to this as the "weak-signal Gaussian" limit. With these approximations, and using  $\langle \mathcal{R}^2_{\text{eff}} \rangle = 1 - \langle \bar{\mu} \rangle$ , one can solve Eq. (8) for  $\tilde{\rho}^* \sqrt{1 - \langle \bar{\mu} \rangle}$ , and then use Eq. (18) to obtain the minimal signal amplitude  $h_0^*$ .

Apart from the bias introduced by (23), the "weak-signal Gaussian" approximation was found [3] to be rather unreliable for small false-alarm probabilities  $p_{f_A}^H$  and segment numbers in the range  $N \lesssim 10^3$ . We therefore continue with a more exact approach pioneered in [2].

## C. Unbiased semi-analytical sensitivity estimation

We can numerically generate the probability distribution  $P(\mathcal{R}_{\text{eff}}|\Pi_{h_0})$  for the effective response via Monte-Carlo simulation of the assumed signal- and mismatch distributions. Note that  $P(\mathcal{R}|\Pi_{h_0})$  is fully specified in terms of the antenna-pattern response of the detectors for the given signal population. However, we need to prescribe an ad-hoc mismatch-distribution  $P(\bar{\mu}|I)$  for the Hough-on- $\mathcal{F}$  stat search grids. Drawing values for  $\mathcal{R}_{\text{eff}}$  is achieved by drawing  $\mathcal{R}$  and  $\bar{\mu}$  independently, and computing  $\mathcal{R}_{\text{eff}} = (1 - \bar{\mu})\mathcal{R}$ .

Given a probability distribution  $P(\mathcal{R}_{\text{eff}}|\Pi_{h_0})$  we can numerically solve the integral in Eq. (17) for  $\hat{\rho}^*$ . Karl has coded this up in octapps, and using this framework we arrive at the following sensitivity estimate.

### II. ESTIMATING S5R5 SENSITIVITY

In order to estimate the sensitivity, we use the S5R5 parameters:  $N=121, \mathcal{F}_{\rm th}=2.6$ . The quoted sensitivity refers to a 90% confidence level, corresponding to  $p_{f_{\rm D}}^{H^{*}}=0.1$ .



FIG. 2: Predicted sensitivity factor H as a function of frequency.

The two input parameters that need to be specified are the false-alarm probability  $p_{f_A}^{H^*}$ , and the effective  $\mathcal{F}$ -statistic mismatch distribution in SNR,  $P(\bar{\mu}|I)$ :

- The false-alarm probability can equivalently be expressed as a number-count threshold  $n_{\rm th}$ , for which we use the values of the loudest candidates found in the S5R5 post-processing, e.g. see Fig. 3 in the E@H S5R5 paper. We use  $n_{\rm th} \in [70, 76]$  in the table below, which roughly covers the  $\pm 3\sigma$  range in  $n_{\rm th}$ .
- We use the mismatch distribution obtained by Miroslav from his follow-up pipeline. The distribution has mean  $\langle \bar{\mu} \rangle \approx 0.61$  and standard deviation  $\sigma_{\bar{\mu}} \approx 0.15$ .

Running S5R5Sensitivity.m<sup>2</sup> which uses octapps<sup>3</sup>, we obtain the following result:

| Number-count thresholds<br>False-alarm probabilities | $p_{f_{\mathrm{A}}}^{H}$ | 70<br>6.0e-13 | 71<br>1.6e-13 | 72<br>3.9e-14 | 73<br>9.4e-15 | 74<br>2.2e-15 | 75<br>5.0e-16 | 76<br>1.1e-16 |
|------------------------------------------------------|--------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| raise-aiarm probabilities                            |                          | 0.06-13       | 1.06-10       | 3.96-14       | 9.46-10       | 2.26-10       | 5.0e-10       | 1.16-10       |
| [Biased (naive) estimate]                            | $\hat{ ho}_0^*$          | 2.6           | 2.7           | 2.7           | 2.7           | 2.7           | 2.8           | 2.8           |
| Mean SNR                                             | $\hat{\rho}^*$           | 5.1           | 5.2           | 5.3           | 5.4           | 5.4           | 5.5           | 5.6           |
| Map's F-factor                                       | F                        | 42.5          | 43.1          | 43.8          | 44.5          | 45.2          | 45.8          | 46.5          |
| Sensitivity factor                                   | H                        | 140.8         | 143.1         | 145.3         | 147.5         | 149.8         | 152.0         | 154.2         |
| Sensitivity scale $[s^{1/2}]$                        | $\sigma_h$               | 31.0          | 30.5          | 30.0          | 29.6          | 29.1          | 28.7          | 28.3          |

## A. Predicting the S5R5 upper limits

To predict the  $h_0$  upper limits obtained by the S5R5 search, we additionally need:

• The number count threshold  $n_{\rm th}$  in every 0.5 Hz frequency band for which upper limits are quoted. These were supplied by Paola as significances/critical ratios CR, which were converted to number counts using  $n_{\rm th} = \sigma \text{CR} + \langle n_{\rm th} \rangle$ , with  $\sigma = 4.8$  and  $\langle n_{\rm th} \rangle = N(1 + \mathcal{F}_{\rm th})e^{-\mathcal{F}_{\rm th}}$ . This gave 31 distinct values of  $n_{\rm th}$ , ranging from 69 to 120.

 $<sup>^2</sup>$  git-version a 84e432abebdff6e800861caff59380cec0fde0d-CLEAN  $\,$ 

 $<sup>^3</sup>$ git-version 8c592f0ea8084e77f6fbf9e0ffc54ff3d19a9133-CLEAN

 $\bullet$  The noise floor  $\mathcal{S}$ , harmonically averaged over SFTs and detectors; this was supplied by Map and Paola.

For each 0.5 Hz frequency band, we calculate the sensitivity factor H using the appropriate  $n_{\rm th}$ . Then using the mean noise floor S in the 0.5 Hz band, and Eq. (20), we calculate a prediction for  $h_0$ . The predicted sensitivity factors H are plotted as a function of frequency in Fig. 2.

B. Krishnan, A. M. Sintes, M. A. Papa, B. F. Schutz, S. Frasca, and C. Palomba, Phys. Rev. D. 70, 082001 (2004), arXiv:gr-qc/0407001.

<sup>[2]</sup> K. Wette, Phys. Rev. D. 85, 042003 (2012), DCC LIGO-P1100151-v2, URL https://dcc.ligo.org/cgi-bin/private/ DocDB/ShowDocument?docid=75488.

<sup>[3]</sup> R. Prix and M. Shaltev, Phys. Rev. D. 85, 084010 (2012), arXiv:1201.4321.

<sup>[4]</sup> R. Prix, Phys. Rev. D. **75**, 023004 (2007), gr-qc/0606088.

<sup>[5]</sup> R. Prix, Tech. Rep. (2010), (LIGO-T0900149-v2), URL https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=

<sup>[6]</sup> B. Abbott et al. (LIGO Scientific Collaboration), Phys. Rev. D. 69, 082004 (2004).