
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1200291-v1 LIGO June 11, 2012

Real-time Code Generator (RCG)
Software Component Overview

R. Bork

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

LIGO LIGO-T1200291-v1

 2

1 Introduction
The purpose of this document is to provide a description of the Real-time Code Generator (RCG)
software. It is intended to provide sufficient detail for experienced software developers to modify,
enhance or maintain the core RCG software. This includes the RCG compiler functions and the
various RCG perl and C code components necessary to produce and compile the code that runs on
the aLIGO real-time control computers. This document does not cover the aLIGO data
concentrator, framebuilder and network data server software.

2 References
1) aLIGO CDS Design Overview LIGO-T0900612

2) aLIGO CDS Real-time Sequencer Software LIGO-T0900607-v5.pdf
3) CDS Real-time Data Acquisition Software LIGO-T0900638

4) aLIGO CDS Inter-Process Communications Software LIGO-T1000587
5) CDS Standard IIR Filter Software LIGO-T0900606

3 Overview
The RCG consists of three primary components:

1) Matlab Simulink, which provides the Graphical User Interface (GUI) and text files
which represent the code to be generated.

2) Perl parser scripts, which read the Matlab .mdl files and produce:
a. C code to be compiled for real-time execution.
b. EPICS State Notation Language (SNL) code, which acts as the interface

between the real-time software EPICS database records.
c. EPICS database records, which act as the interface to the controls network via

EPICS Channel Access (CA).
d. Various header and Make files to support the compilation of code via the Linux

GNU compilers.
3) Core header and C code files that are compiled as part of every application built by the

RCG.
The following diagram depicts the various code modules that make up the RCG, from
programming through to executable code. All RCG software may be found in the CDS SVN code
repository under the advLigoRTS area. Note, that while this diagram shows the key components, it
is not totally inclusive of all source and header files.

LIGO LIGO-T1200291-v1

 3

4 Matlab Simulink
Matlab is used as the GUI to allow the “application programmer” to define a control process via a
graphical diagram. The output of Matlab is a text file, which describes the various parts and their
connections. This text (.mdl) file is then used by the RCG in the compilation process.

All parts that RCG supports are contained in the CDS_PARTS.mdl library file in the
$ROOT/src/epics/simLink directory, where $ROOT is the top level directory of the particular
advLigoRTS checkout. Graphical representations of the individual parts in this library are
contained in the simLink/lib directory. Note that the CDS_PARTS are only graphical parts which
contain information necessary for the RCG parsers in compiling code. They are not true Matlab
parts, as they have no Matlab code associated with them.

LIGO LIGO-T1200291-v1

 4

5 RCG Perl Scripts
Once the Matlab model has been built and .mdl file saved, the RCG build process is executed using
a standard “make” command. Prior to this process, a “build” directory needs to be established and
configured. This is done by:

1) Creating a directory, typically in the /opt/rtcds/<site>/<ifo> directory. This area is
designated $BUILD for the remainder of this document.

2) Moving into that directory and, from the command line, executing $ROOT/configure.
 The latter will create a Makefile and produce subdirectories needed in the make process. Once this
is done, executing ‘make modelname’ will invoke the various RCG Perl scripts and compilers to
produce runtime executable code and various supporting configuration files. Invoking ‘make
install-modelname will then install all of the generated objects to appropriate target directories to
load the software onto the real-time control computers.

5.1 Model Parsing Code
To develop executable software from the Matlab file, the RCG basically has to do two things:

1) Find all of the parts defined in the file, for which code will be substituted.
2) Find all the links between parts to determine the processing sequence.

The Perl scripts and modules that perform these functions are located in the $ROOT/src/epics/util
(Perl scripts) and $ROOT/src/epics/util/lib directories (Perl modules). The first script invoked by
the make command is feCodeGen.pl. This script essentially has three parts:

1) Find all the parts and links between parts. This is done with the help of the
lib/Parser3.pm module. At the end of this step, a diags.txt file is produced in the build
directory under src/epics/util. This file contains a list of all parts found and all
inputs/outputs to/from each part. This file is not used in the remaining build process, but
may be a useful diagnostic tool for code developers if the build process does not
complete successfully.

2) The script produces an ordered execution list for all of the parts. The basic concept here
is that a part gets added to the execution sequence list when, and only when, all of the
parts that provide input for this part are already on the execution list. The first items
placed on the execution list are those parts which either do not require an input from
another part, or have only one input connection and that input connection is from an
ADC module. Once these items are placed in the list, the script continues to loop over
the remaining parts until all part input requirements have been satisfied or the code finds
that there are connection errors in the Matlab model.

3) Writing of source code and header files. The script now runs through the execution parts
list, essentially substituting source code for each part. Some of this substitution is
handled directly by feCodeGen.pl, and others are handled by Perl modules located in
the epics/util/lib directory. As a general rule, parts that are supported by Matlab itself, as
depicted in the CDS_PARTS.mdl, Simulink Parts subsystem block, are handled by the
feCodeGen.pl script itself, with all other parts using the supporting Perl modules.

All of the cdsPart.pm modules contain the same sub components, such that they can be easily
developed and “plugged into” the RCG package. These sub components are:

LIGO LIGO-T1200291-v1

 5

1) sub partType: Returns the part type information to the RCG for use in later code
generation calls. This part type must be unique.

2) sub printHeaderStruct: Includes EPICS definitions to be installed in the modelname.h
file, which is later used to develop the EPICS to real-time interface definition.

3) sub printEpics: List of EPICS channels associated with this application, in the form
need by fmseq.pl (described in next section).

4) sub printFrontEndVars: List of variables to be used by this part that need to be defined
in the real-time C source.

5) sub frontEndInitCode: Any code required during the initialization of the real-time code.
6) sub fromExp: Code to be inserted when another part requires data from this part.
7) sub frontEndCode: Source that defines the processing to be performed when this part is

executed.

The principal products of the feCodeGen.pl script are:
1) Real-time C source and Makefile. These are placed in the build directory under

$BUILD/src/fe/modelname directory.
2) A modelname.h header file in the $BUILD/src/include directory. This header file

primarily defines the structures that allow the real-time code to communicate with the
EPICS SNL code, which will in turn communicate with the EPICS database.

3) A text file, using the model name, in $BUILD/src/epics/fmseq directory. This file lists
all filter modules and EPICS inputs/outputs. This file will be used in the generation of
the EPICS State Notation Language (SNL) code and EPICS database records by another
script, fmseq.pl, described below.

5.2 EPICS Code and Database Generation
Another Perl script, $ROOT/src/epics/util/fmseq.pl, is invoked to generate the EPICS interface side
of the code. This script reads in the following files to obtain system information and produce the
EPICS products:

1) The model name text file produced by feCodeGen.pl in the $BUILD/src/epics/fmseq
directory.

2) The skeleton.st and skeleton.db files located in the $ROOT/src/epics/util directory. The
skeleton.st file is the template for generation of EPICS SNL code, which fmseq will fill
in with model specific items. The skeleton.db file is a template of all EPICS records to
be produced for filter modules.

From the text file in epics/fmseq, the fmseq script will develop the following products in the
$BUILD/build/<modelname>epics directory.

1) EPICS SNL code (modelname.st). This code will be used to move data between the
EPICS database records and the real-time code via shared memory on the real-time
computer.

2) EPICS database (modelname.db file). The database records will allow data to be
communicated on the control system networks to various EPICS compatible software
tools, such as operator display graphical user interfaces.

3) A Data Acquisition (DAQ) channel list file (modelname.ini). This file is read by both
the real-time code and DAQ software to acquire data at runtime. As of RCG V2.5,

LIGO LIGO-T1200291-v1

 6

channels to be acquired and saved to disk are listed within the application models via a
new DAQ part.

4) A Global Diagnostics channel list (modelname.par). This file is used by the real-time
code and DAQ system to provide a list of all data channels available “on demand” as
testpoints or excitation entry points.

As the make process continues, the SNL code will be run through the SNL precompiler and then
GNU compiler to produce exectuables in the $BUILD/target/<modelname>epics directory. The
final startup scripts and databases are also generated here, for later movement to the runtime target
directory when make install is invoked.

6 Real-time Core C code modules
The RCG Perl scripts produce an application specific C code file for each control model. This code
will be inline compiled with various RCG C code sources to produce a final kernel module object.
The key C code modules provided as part of the RCG are shown in Figure 1 above and described
further in the following subsections.

6.1 controller.c
This code, referred to as the Real-time Sequencer, is described in detail in Reference 2. Once the
real-time code gets installed as a kernel object, it divorces itself from the Linux OS and its
scheduler and interrupt generator. This code now takes over those functions for this user
application.

Along with timing and scheduling, this code module takes care of all code initialization and I/O
transactions for the user application, either:

1) Directly. This code performs all I/O transactions for ADC, DAC and binary I/O
modules. Note that this is dependent on the compile options:

a. adc_master: On each real-time computer, one application, referred to as the I/O
Processor (IOP) performs all I/O initialization and mapping, and directly
communicates data from/to ADC and DAC modules. It passes this data, along
with addresses for binary I/O modules and real-time networks, via shared
memory to the remaining real-time applications on this computer. It is intended
to run at the full 65536 clock rate of ADC/DAC modules, and makes use of the
ADC data as a timing trigger for the next code cycle.

b. adc_slave: Actual control applications are built with this compile option. In this
case, the controller code communicates and synchronizes with the IOP. It
handles binary I/O module transactions directly with the PCIe devices only.

2) Indirectly. Address locations are passed to commData2, described later, for real-time
communications between real-time processes.

6.2 map.c
The RCG runtime code accesses all I/O devices directly through bus addresses ie does not typically
use vendor provided Linux drivers. This is done for both performance reasons and, since the RCG
code becomes a kernel object, it cannot access the application developer’s routine calls typically
provided by vendor drivers (intended to be accessed from user space). There are a few cases, such

LIGO LIGO-T1200291-v1

 7

as with the Dolphin real-time network, where the vendor has provided calls at the kernel level and
are used by the RCG runtime code.

All of the routines used in mapping of I/O devices, along with calls to read/write RCG supported
PCIe modules, are contained in the map.c source file. On initialization, the controller.c code
(compiled as an IOP) calls the mapPciModules routine in the map.c file. This code contains the
methods necessary to search for and find all devices on the PCIe bus and make appropriate
mappings to CPU bus addresses, such that the remainder of the PCIe read/write routines can
address the PCIe modules directly.

A list of all PCIe devices, addressing, and register setup definitions are provided in the
$ROOT/src/include/drv/cdsHardware.h file.

6.3 daqLib.c
The file contains all of the routines used in acquiring data from the real-time application, as well as
extracting/injecting GDS testpoint data and excitation signals. This code is called once per cycle by
the controller.c software. This code is described in further detail in Reference 3.

6.4 commData2.c
The RCG provides software for synchronous communication of data between real-time processes,
either on the same computer or, via real-time networks, to processes on other computers. The
source code routines for this are located in the commData2.c file. Calls to these routines are placed
directly into the user application produced by the RCG, with a call to read all inputs at the
beginning and a call to write all variables at the end. A detailed description of this software is
provided in Reference 4.

6.5 fm10Gen.c
Primarily, control is provided by the definition IIR filters to provide the control transfer functions.
Code to support IIR filtering is included in this file, with a detailed description provided in
Reference 5.

6.6 timing.c
The real-time code performs various timing measurements for diagnostic purposes. Routines to
read time data from IRIG-B time code receiver modules and perform timing calculations on
duotone signals are included in this source file.

6.7 epicsXfer.c
The bulk of the data that needs to be exchanged at runtime between the real-time code and EPICS
are filter module variables. With applications often containing hundreds of filter modules and about
a dozen variables per module to be exchanged, this can lead to heavy loading if all done at once.
Therefore, the transfer is spread across many code cycles via the routine in this source file to
provide more consistent timing of the real-time code.

LIGO LIGO-T1200291-v1

 8

6.8 inlineMath.h
Though not a C source file, this file is of particular note. Since the real-time application is a kernel
object, it cannot be compiled using the standard math.h file for performing standard math
functions. Therefore, the real-time code uses math assembly code instructions, as defined in this
file.

7 Runtime Support Code
In addition to source that gets compiled into the applications as they are build, there also exists
various source files to provide runtime capabilities.

7.1 Linux Kernel Patch
The RCG produced real-time code must be precisely (within a few µseconds) and consistently
triggered at a known time (ADC data ready). This type of precision is not available from a GPL
Linux OS, even with the present real-time extensions for Linux. Therefore, a Linux kernel patch
was developed which:

1) Releases the application target CPU core from the Linux OS. Basically, it reports to
Linux that the particular core is powering down and no longer available for scheduling
tasks or handling interrupts.

2) It loads and executes the RCG real-time application on the Linux released CPU core.
These steps ensure that the desired CPU core is under the sole ownership of the real-time
application and the Linux OS will not interfere. At this point, scheduling is done exclusively by
ADC data arrival, which is in turn triggered precisely by the aLIGO Timing Distribution System
(TDS).
Linux patch files for various Linux release versions are maintained in the $ROOT/patches
directory.

7.2 mbuf
Communications between the real-time process and EPICS and DAQ routines, along with IPC to
other real-time processes on the same computer, are done through computer shared memory. This
memory allocation and management is performed by mbuf, which is also developed as a kernel
module, one object per computer. The source code is located in the $ROOT/src/drv/mbuf directory.

7.3 mx_stream
The real-time code produces a DAQ data buffer, in shared memory, every 1/16 second. Upon
completion, a non-realtime program is triggered to pass this data on to the DAQ via a separate
Ethernet. Source code for this communication program is located in the $ROOT/src/mx_stream
directory.

