An Overview of Advanced LIGO
Interferometry

Luca Matone
Columbia Experimental Gravity group (GECo)

Jul 16-20, 2012
LIGO-G1200743



LSC) So far... @E

e Advanced LIGO optical configuration
— Dual-recycling laser interferometer
— Signal Recycling Cavity
* Introduces a tunable frequency response
e Longitudinal Degrees of Freedom to Sense and Control
— Five DOF, added level of complexity, two pairs of sidebands
— Demodulation and Double-Demodulation (fy, f5, f1 + f2, f5 — f1)

e Homodyne detection scheme
— Get around heterodyne detection scheme at the DP
— Requires to lock at small L_ offset

e Lock Acquisiton

— Green laser locking: AUX laser system to stabilize LIGO armes,
locking them away from resonance

— Lock central degrees of freedom (demodulating at 3f)
— Bring arms into resonance
— Switch control to standard heterodyne/homodyne operation



LSC)
Mode Cleaners and Alignment

¢4

e |[nputlaser beam needs to be “matched” to IFO

— Maximize light power coupling to IFO

e Laser frequency and beam jitter noise needs to
be reduced

— “Common” noise term couples to the Dark Port

e TM angular noise needs to be mitigated

— Misalignments also couple to the DP

* Limit to IFO sensitivity



lRecaII: Plane-Wave Approximation's

N

Flat wavefront
(like that of a plane wave)
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Stable Optical Resonator

1. Light rays reflect multiple times.

2. Rays reflect onto themselves

3. Constructive interference forms &
a standing wave within the
cavity
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Misalighment

1. Light rays reflect multiple times but ...
2. Rays don’t return onto themselves
3. No standing wave (unstable resonator)

LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (4) 6



Plane-Concave Cavities

1. Light rays reflect multiple times. /
2. Standing wave

Cavity axis: offset

with respect to input
SEEINIENE
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Plane-Concave Cavities

Light rays reflect multiple times.

Standing wave
Input beam axis
4. Cavity axis is tilted and offset respect to input

wnN =
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In General:
Two Reference Frames

Reference Reference frame of the cavity axis:
frame of the tilted and offset with respect to

inout beam axis input beam axis
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=3

Stability Condition

o<(-7)

where L is the cavity length
and R, , is the mirror radius
of curvature
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Laser Beam @E

e |deally, coherent light with

Gaussian intensity profile ,
Intensity

o ”Fundamental mOdeH;
mostly TEMOO

e Beam size w

Beam size w

— Amplitude decreases by 1/, stance

— @Gaussian
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Beam Mode: The Fundamental @E

Wavefront

1/e profile

with radius of
curvature R(z

alst/\‘
Beam size size Wy ‘\‘
_':

~~ R(Z)
paga

aXIS Z

|
|
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LSC

Cavity Mode

The laser mode that would resonate given the
cavity geometry (R, R, and L)

R, R,

L
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Mode-Matching @E

Maximize coupling of
the incoming beam mode
to
the cavity mode




Description of a Laser Beam @E

Any laser beam can be represented in
terms of TEM (Propagation) modes Gouy phase

U,,,(x7v, 2) Spot size Wavefront radius

Ay X y
- o () (V)
(z) ™ X/—W(Z) " \/—W(Z)
e_(x2+y2)/W2(Z) X
e—ik(x2+y2)/2 R(Z)

ot (k2 -Pmn@)

w

Hermite
Wavefront polynomial
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Mode patterns @E

TEM TEM ,, TEM

e TEMmn:

— Transverse Electro-Magnetic
(TEM) modes

e Figure
TEMHy g

TEM ,,

TEM

— plot of |Um,n(x, y, Z)|2V5-
position x,y




LSC

Fundamental Mode: TEMOO @E

AOO

UO,O(x'y' Z) = W(,Z X

e_(x2+y2)/W2(Z) X
e—ik(x2+y2)/2 R(z)

e—i (k z —<P0,O(Z))
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LSC

First order modes: TEMO1 and TEM1

Aq
U1 O(X y,Z) —_ W(Z) X \/_W(Z)
e (.X' +y2)/W2(Z) X
e—ik(x2+y2)/2R(z) x

e—i (k Z —<P1,0(Z))
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LSC

TEM11, TEM20 and TEMO?2 @E

y
W(Z) % \/_W(Z)

e (x +y2)/W2(Z) X
e—ik(x2+y2)/2 R(z)
e—i (k Z —§01,1(Z))

Aq
Ui 1(x,y,z) = W(’Z) X V2
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LSC

Resonance Condition

TEMmn resonance (4
frequency

/ Free spectral
range (FSR)

pd |nteger

V
M (g + 1) +
ST

vy
1 . L L
— (m+n+1) cos 1—— ) 1——
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LSC .
BLR o sverse Mode Spacing Av @E
Fundamental Second order
mode TEMOO [ modes: 01, 10 | ,odes: 11, 02, 20
/ﬁr
| Av

<> ©

>
Frequency

Av 1 1 L L
= — COS 1——)(1———
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Input beam axis

Cavity axis is translated and
tilted by a and a with respect to
the input beam axis.
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If a and a are “small” then
to first order approximation
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Aligned Cavity @E

1/)refl — Ro,o Uo,o
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Measuring Misalignments

 Modulating incoming laser field so that sidebands do

2

=
not resonate in cavity S
 Demodulating on reflection rgn
Win = JoUgo + J1Ugoe™*t — JyUgoge ™ 2F ‘ g
iQt —iQt 3

l/)refl — l/)refl,o + l/)refl,+ e + l/)refl,— e %

ko]

Mixing determined by Gouy phase ¢y, |§ @

2 %

‘l/)refl‘ = DC + §
JoJ1UpoUp1 (a cos @yo + i asin@gyg)| sin Qt°

(v66T)

Inphase demodulated signal contains
misalignment information
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How? Wavefront Sensor @E

e Plot of UygUjyq vs. position from
beam axis.

— Recall that the demodulated signal is

| JoJ1

' » To measure UyyUy; We need a

UOOU01

(@ cos @y + i asin@qyg)

special photodiode

— UyoUyqis an odd function (anti-
symmetric) about the beam axis

— A ‘standard’ photodetector would
integrate over the beam surface and
measure zero.

* Need a special photodiode:

Wavefront Sensor



e Plot of TEMOO vs. position
from beam axis

* Plot of TEMOO power vs.
position from beam axis

 Photodetector would
integrate over beam
profile (area under the
curve) to measure beam
power: non-zero measure

ZTEMOO example “
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LS C TEMO1 exam P I e

 Plot of TEMO1 vs. position
from beam axis

 Plot of TEMO1 power vs.
position from beam axis

 Photodetector would
integrate over beam profile
(area under the curve) to
measure beam power: non-
Zero measure

 No information given about
the presence of “lobes”
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TEMOO * TEMO1

e Plot of TEMOO * TEMO1 vs.
position from beam axis

 Odd function about the beam
axis
* Photodetector would
integrate over beam profile % ;
(area under the curve) to &
measure beam power: zero ..
measure o

¢4

e Complete loss of information



Wavefront Sensor

 Able to integrate half-plane
(or quarters)

e Sum of the signals gives
power on the four half planes

* Taking the different between
half planes, we recuperate
the “lost” signal

QN

0 0
f Ugo(x) Uy (x)dx —f Upo(x) Upo(x)dx =
0 — 00

\



Vertical @E
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Gouy Phase @

JoJ1UooUg1 (@ cos @gg + i asinggg)

Gouy phase depends on
Gouy phase distance z from waist w,
- < Az ) |
Poo = tan > * Qoo = 0 at the waist
T Wo * Qoo = 1/2 far from the
waist
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Gouy Phase Telescope @E

Wavefront sensor

at oo = 0
IFO
output -
port > i E )
One sensor would provide Wavefront sensor
translation information — the at oo =1/2

other tilt information



BB \Wavefront Sensors in AdvLIGO

QFD

To LSC +

.\-

' &P WFs

To LSC \

Nl @ wrs

To LSC -
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So far... @E

* TEM

e Cavity Mode and Input Laser Beam

— Cavity mode: defined by resonator geometry

— Input laser beam: represented as a linear combination
of TEM (mostly 00)

— Mismatch (mode-mismatch, or misalignments)
between the two: generates higher-order TEMs

e Automatic Alignment and Wavefront sensors

— The amount of first-order TEMs (01 or 10) provides
alignment information

— PDH modulation, sidebands do not resonate in cavity
— Wavefront sensors placed at two Gouy phases
— Sensing Matrix



The Input Mode-Cleaner

23

Triangular cavity

1. Spatially filters E
incoming laser o

0-70-020020L ,2uauindog

beam

2. Provides frequency
noise suppression

3. Attenuates laser
beam jitter
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Spatial filtering @E

Higher-order TEMs

* Incoming beam are reflected 4
— Beam defects (higher
order TEMs) are From PSL / To IFO
reflected (rejected) N >

— Only fundamental mode
(TEMOO) resonates in
cavity and is completely
transmitted




Cavity used as frequency

standard (for high
frequencies)

Let L be the MC length
(with AL length
fluctuations) and v the

laser frequency (with Av

fluctuations) then

AL Av AL

1%

L

Phase (deg)

Frequency Stabilization

, o

num =[39.4784], den =[1  1.25664  39.4784]
LA | T T T T |

i
10"

il
10’
f [Hz]

10°

B Slngle stage selsmlc
Y attenuatlon ~ 1/f2

M|
10"

M|
10’
f[Hz]

10°



LSC

= Output Mode-Cleaner (OMC) @E

Four-mirror bow tie
configuration

Homodyne detection To Dark Port

— Carrier TEMOO carries GW photodiode
information

OMC filters out RF [

sidebands

From
OMC filters out all non-

TEMOO modes (“junk” light) IFO
IFO’s wavefront Reflected
deformation due to beam

— Imperfections in the optical (“junk”)

components and their
deformation under heating.
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OMC length scan (old data) @E

* Plot of OMC r
transmitted power vs 00 %
cavity length

L e o

* Presence of high
order modes

 Black — data, blue — .
model, red — fit

500 -

|

100 +

50 +

9610101 eiawe) aseyd ayy suisn adAjojoud
JINO 3Y3 o Apnis, agemey e11a) wod4

10 |
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Power absorbed and @E

thermal deformations
ETM

~800 kW High
— s Order

TEMs!

Thermal '
expansion and
‘ deformation of

the optic; acts
like a lens

Thermal absorption leads to ...
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Thermal Compensation System (TCS):
compensate for deformations

No Iens effect,
even thermal

Test WESS

(ITIVI or ETM)

Q+

Thermal |
deformation [l Thermal

due to main deformation :
IFO beam due to TCS expansion
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Compensate for deformations
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e Actuator: CO2 Laser

advanced

LIGO

aLIGO CO2 Projector ‘/j]r_]

i

= -

COZ2 laser projector table

* Annulus incident on compensation plate
» Relaxes absolute requirement on CO2 laser intensity
noise by a factor of 3x.

From Aidan Brooks “Advanced LIGO Thermal
Compensation System (TCS)” G1101270

G1101270 17
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— Actuator: CO2 Laser

LIGO Beam profile and beam

shaping

mir
130
L
L
| 108
i
x 1
SO0
A
i
i i
] [ m ] 1 ] - R

axicon pair

e |nitial beam is elliptical
e Will need beam re-shaping

From Aidan Brooks “Advanced LIGO Thermal
Compensation System (TCS)” G1101270

e Axicons will create an annulus

G1101270 20
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Actuator: Ring Heater @E

Ring Heater Overview Dﬂ]

ring heater

e Ring heater encircles the ITM

e Radiatively heats the barrel
» More ANNULAR heating

e Thermo-elastic deformation of
ITM surface increases
curvature

e Nichrome wire wrapped around St
glass rod "

e Surrounded by golden shield
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LSC

Actuator: Ring Heater GE
LIGO
Ring Heater Segments

‘©
£
Vo
£ K
|_
o =
o S * Two segments
: ‘_| Ta [ n
AN * Enables “easy” removal
c 9 _ * Heating not 100%
o F ol i * .
> = gt - axially symmetric
© |
< € '
\m 8
;Y U
S & ) VA" -
o C
m O \
c
o 3
— C
< 9 \ITM =
€ ¢ -
© o
w O
G1101270 28
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LSC Sensor:
Hartmann Wavefront Sensor (HWS)

advanced

LIGO B

HWS overview

SLED
1. wavefront distortion,

W(x,y), accumulated
Probe beam here

Hartmann [

P-‘ (" ™y '\l
Sensor |

I imaging &
\ demagnifying A Y g
2. wavefront telescope -
distortion, W'(x,y),
measured here

G1101270 34
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From Aidan Brooks “Advanced LIGO Thermal
Compensation System (TCS)” G1101270



aLIGO TCS Overview

Sensors + actuators Hartmann

sSensor

ALS laser '
=

ring heater ring heater

]
1]
-l

Hartmann
Sensor

CP M

\r[ ]
Compensation Plate soztaser

(CP) or Reaction

©
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o
O o
O
— i
- O
Y
c
()
_3':
< €
S QO
MR
o &
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m O
c'g
©
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<Q_
£ ¢
S o
w O

Reaction
Mass (RM)
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Vs

TCS:
Heating pattern

e Took months to have
“good” pattern

Sad

- But we're there!

« “good” and “not so
good” makes or
breaks high power

20200609 ,8uluoissiuwo)

« Now we can (finally!)
focus on “how much
heat” optimization

Good

TCS pattern Michelson dark fringe

LIGO-G0900202-V2 LVC March 2009, Keita KAWABE
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Summary @E

. Automatlc Alignment and Wavefront sensors

— The amount of first-order TEMs (01 or 10) provides
alignment information

 Input Mode Cleaner

— Suspended triangular cavity

— Spatially filters incoming laser beam (non-TEMOO modes
rejected)

— Provides additional frequency noise and beam jitter
suppression

e QOutput Mode Cleaner
— Four-mirror bow tie configuration
— Sidebands are rejected along with non-TEMOO modes

e Thermal Compensation System (TCS)

— Compensates for thermal induced deformations
(~800 kW storedin arms)

— Optimizes IFO coupling to TEMOO (light that carries GW
information)



Group Activity @E

e Post questions on the board
e Group discussion

e |n preparation for tomorrow

— Read “The Advanced LIGO Length Sensing and
Control Final Design” T1000298-T
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