Thermal Noise Reduction in Future Gravitational Wave Interferometers

Nicolas Smith-Lefebvre LIGO Caltech April APS 2013

Punch line first

Astrophysical benefits beyond Advanced LIGO

Advanced LIGO Noise

Thermal Noise, a physics lesson

Fluctuation-Dissipation Theorem

 The FDT tells us that thermal fluctuations are closely related to friction

 Q is the mechanical quality factor (inverse of fractional energy lost after one oscillation)

FDT explains...

- Johnson-Nyquist noise in electronic systems
- Brownian motion of particles in fluids
- Blackbody radiation
- Quantum noise...

T and Q are not independent

- Silica gets worse at low temperatures
- Thermoelastic (Zener) damping

A. Schroeter et al arXiv:0709.4359

Cryogenics in Gravitational Wave Interferometers: the cooling problem

a few Watts absorbed

Cooling power as a function of fiber diameter and temperature

Cooling power as a function of fiber diameter and temperature

Cooling power as a function of fiber diameter and temperature

Thermal Noise as a function of fiber diameter and temperature

Thermal Noise as a function of fiber diameter and temperature

Thermal Noise as a function of fiber diameter and temperature

Primary sources of thermal noise

Primary sources of thermal noise

Suspension Thermal Noise

Primary sources of thermal noise

Coating Thermal Noise

The Silicon Bullet

- Very low intrinsic loss at 124K, where radiative cooling is still feasible
 - Zero crossing of thermal expansion coefficient, so no Zener damping
- Large thermal conductivity (10W/cmK), low thermal distortion, lots of circulating power in the arms
 - Fused Silica is limited to <1MW, (1000 times worse conductivity)
- Requires move to 1550nm laser, squeezed light research maturing rapidly (12dB at high-f)

Cryogenic Silicon Suspensions

Losses in Silicon Samples @Jena/Glasgow/Moscow

- Losses in silicon samples still limited by surface quality or other dirty physics
- More tests required to hit the true loss limit

Cryogenic Reference Cavities @Caltech

- Provides experience for many relevant technologies
- Ultra-stable DC frequency reference
- Potentially interesting system for studying macroscopic quantum mechanics

High emissivity coating experiment

Acktar Black[™] World's Blackest Coatings

Prototype Suspension Test @Caltech

- Early planning
- Shopping for a cryostat

Reducing coating thermal noise

- Traditional materials used for optical coatings have relatively low Q
 - Amorphous Silica/Tantala
 - Q ~ few 10⁴
- High Q optical coatings has been a major research subject for many years
- Recent results on new crystalline materials show order of magnitude higher Q
 - Very exciting!

AlGaAs Coatings

Tenfold reduction of Brownian noise in optical interferometry

Garrett D. Cole^{1,2,*}, Wei Zhang^{3,*}, Michael J. Martin³, Jun Ye³, and Markus Aspelmeyer¹

¹ Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna, Austria

² Crystalline Mirror Solutions GmbH, A-1090 Vienna, Austria

³ JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA

- Shown to have Q>10⁵
- Thermal noise upper limit measured, consistent with measured Q
- Grown on GaAs substrate, lifted and bonded onto optic (any material)

arXiv:1302.6489

AIGaAs Thermal Noise Estimate

Cole et al. arXiv:1302.6489

AIGaP Coatings

- Also high Q, though no thermal noise measurement yet
- Has the same lattice spacing as Silicon, so can be grown directly on the mirror

Possible Sensitivity of Future LIGO

Possible Sensitivity of Future LIGO

Possible Sensitivity of Future LIGO

