Signet 2537 Paddlewheel Flowmeter

3-2537.090 Rev G 9/12 English

SAFETY INSTRUCTIONS

- 1. Depressurize and vent system prior to installation or removal.
- 2. Confirm chemical compatibility before use.
- 3. Do not exceed maximum temperature/pressure specifications.
- 4. Wear safety goggles or faceshield during installation/service.
- 5. Do not alter product construction.
- 6. If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- 7. This device is not approved for use or installation in hazardous locations.

Description

The 2537 Paddlewheel Flowmeter Series offer low flow, low power and high resolution with various output options such as a Volumetric Pulse, Pulse Divider, Flow Switch, Digital (S³L), or 4 to 20 mA. This unit can be configured on-site directly through the built-in user interface.

- · The 4 to 20 mA model provides a blind current loop output.
- The Digital (S³L) model provides a Digital (S³L) output for use with the Signet 8900 Multi-Parameter Controller or 9900 Transmitter.
- The Multi model uses a single relay (mechanical or solid state) and has three selectable operating modes:
- Divider Mode scales the paddlewheel frequency down to accommodate low frequency input devices.
- Total Mode outputs one pulse per a set volume of fluid.
- Flow Switch Mode uses a single relay for Hi or Lo alarm operation.

A small LCD enables the 2537 to be programmed without any external equipment. During normal operation the display is not visible.

For earlier versions of this sensor, please visit our manual archives at www.gfsignet.com and download the 2537 rev C manual.

Specifications

General

Wetted Materials

Model Suffix	Sensor Body	Rotor	Pin	O-ring
-P0, -P1	glass-filled PP	PVDF, Black; optional ETFE w/ or w/o carbon fiber reinforced PTFE sleeve	Titanium	FPM
-T0	PVDF, Natural	PVDF, Natural; optional ETFE w/ or w/o carbon fiber reinforced PTFE sleeve	PVDF, Natural	FPM

Case: PBT, yellow Inside Cover: Valox, black

Wiring Ports: ½ in. NPT threads; liquid-tight

connector accepts cables 7 to 10 mm OD (0.275 in. to 0.394 in.)

Power Requirements

Multi:

with Dry-Contact Relay: 24 VDC nominal, ±10%, regulated

30 mA max. current

with Solid-State Relay: 5 to 24 VDC nominal, ±10%, regulated

30 mA max. current

Digital (S³L): 5.0 VDC min. to 6.5 VDC max.

30 mA max. current (1.5 mA nominal)

4 to 20 mA: 400 mV max. ripple voltage

30 mA max. current

Reverse Polarity and Short Circuit Protected: Up to 40 V, 1 hour

Over-Voltage Protection: > 40 VDC over 1 hour

Paddlewheel Sensor Performance Specifications

Pipe Size Range: DN15 to DN200 (½ in. to 8 in.)

Min. Reynolds Number: 4500

Paddlewheel Frequency: 49 Hz per m/s nominal

(15 Hz per ft/s nominal)

Operating Range: 0.1 m/s to 6 m/s (0.3 ft/s to 20 ft/s)
Linearity: ±1% of max. range @ 25 °C (77 °F)
Repeatability: ±0.5% of max. range @ 25 °C (77 °F)

Electronics Performance SpecificationsInput Frequency Range: 1 to 1000 Hz

System Response: 100 ms update rate nominal

Environmental Requirements

Enclosure Rating: NEMA 4X/IP65

Storage Temperature: -10 to 75 °C (14 to 167 °F)

Ambient Temperature: 0 to 65 °C (32 to 150 °F)

Relative Humidity: 0 to 90% RH, non-condensing

Altitude: 2000 m (6,562 ft)

Pollution Degree: 2

Output Specifications

Signal Averaging: Programmable 0 to 100 seconds Sensitivity Response: Programmable 0 to 9 scale

Pulse Divider/Total Pulse Output

Pulse Divider Setting: 1.0000 to 99999

Maximum pulse rate: 300 Hz Maximum pulse width: 50 ms

Flow Switch Output

Relay Modes: Low, High

Time Delay: 0.0 to 6400.0 seconds

Hysteresis: Adjustable in Engineering Units

Relay Specifications

Dry Contact SPDT: 5 A @ 30 VDC, 5 A @ 250 VAC Solid-State Relay: 100 mA @ 40 VDC, 70 mA @ 33 VAC

Digital (S³L) output

Type: Serial ASCII, TTL level 9600 bps Maximum Cable Length: See Digital (S³L) specifications

Current output (Passive 4 to 20 mA)

Loop Accuracy: ±32 μA (@ 25 °C @ 24 VDC)

Loop Resolution: 5 μA

Temp. Drift: $\pm 1 \mu A \text{ per }^{\circ} C \text{ max.}$ Power Supply Rejection: $\pm 1 \mu A \text{ per } V$ Maximum Cable Length: 305 m (1,000 ft)

Max Loop Resistance: 600 Ω @ 24 VDC, 1 KΩ @ 32 VDC

Standards & Approvals

- UL
- CE
- Manufactured under ISO 9001 for Quality, ISO 14001 for Environmental Management and OHSAS 18001 for occupational health and safety.

China RoHS (Go to www.gfsignet.com for details)

Declaration of Conformity according to FCC Part 15
This device complies with Part 15 of the FCC rules.

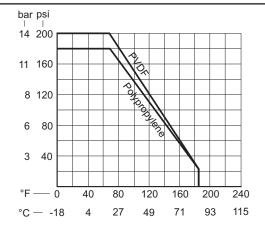
Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and,
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Fluid Conditions

Pressure/Temperature Ratings:

Polypropylene Body:


- 12.5 bar (180 psi) max. @ 20 °C (68 °F)
- 1.7 bar (25 psi) max. @ 85 °C (185 °F)

PVDF Body:

- 14 bar (200 psi) max @ 20 °C (68 °F)
- 1.7 bar (25 psi) max @ 85 °C (185 °F)

Intended Use: This product is intended for use in industrial water treatment and wastewater treatment applications where the chemical content and the fluid temperatures are consistent with the specifications listed herein.

This device is not approved for use or installation in flammable liquids.

Chemical Compatibility

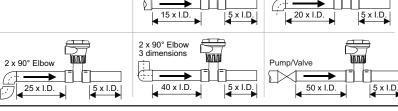
Georg Fischer Signet products are manufactured in a variety of wetted materials to suit various liquids and chemicals.

All plastic materials including typical piping types (PVC, PVDF, PP and PE) are more or less permeable to contained media, such as water or volatile substances, including some acids. This effect is not related to porosity, but purely a matter of gas diffusion through the plastic.

If the plastic material is compatible with the medium according to the application guidelines, the permeation will not damage the plastic itself. However, if the plastic encloses other sensitive components, as is the case with GF Signet plastic paddlewheel sensors, these may be affected or damaged by the media diffusing through the plastic body and rotor.

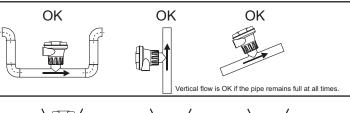
PVDF paddlewheel sensors may experience failure when used in hot nitric acid applications. PVDF is known to allow for substantial permeation of nitric acid constituents without being damaged itself. No clear guideline can be given here, since the damaging effect to the sensor is highly dependent on temperature, pressure and concentration.

Utilizing sensors in applications with aggressive substances is possible. On special request GF Signet can provide sensors with a different internal resin encapsulation (potting) that will delay the damaging effect of acids to the sensors.



The retaining nuts of paddlewheel sensors are not designed for prolonged contact with aggressive substances. Strong acids, caustic substances and solvents or their vapor may lead to failure of the retaining nut, ejection of the sensor and loss of the process fluid with possibly serious consequences, such as damage to equipment and serious personal injury. Retaining nuts that may have been in contact with such substances, e.g. due to leakage or spilling, must be replaced.

Location of Fitting

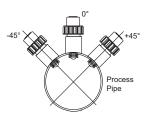

Recommended sensor upstream/downstream mounting requirements:

Select a location with sufficient length of straight pipe immediately upstream of the sensor.

Reducer

Locating the sensor in a trap or where the flow is upward helps to protect the sensor from exposure to air bubbles when the system is in operation.

These configurations are not recommended because it is difficult to keep the pipe full.

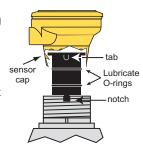


90° Elbow

Sensor Mounting Position

- Horizontal pipe runs: Mount sensor in the upright (0°) position for best performance. Mount at a
 maximum of 45° when air bubbles are present (pipe must be full). Do not mount on the bottom of the
 pipe when sediments are present.
- Vertical pipe runs: Mount sensor in any orientation; however, downward flow is not recommended. Upward flow is preferred to ensure full pipe.

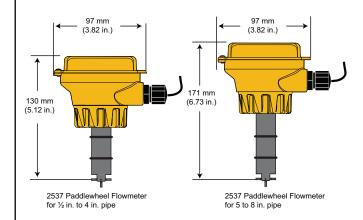
Installation: Pipe fittings


Georg Fischer Signet offers a wide selection of installation fittings that control the position of the paddlewheel in relation to the dimensions of the pipe.

Туре	Description	Туре	Description
Plastic tees []	0.5 to 2 inch versions (MPVC or CPVC) 2.5 to 4 inch versions (PVC)	Iron, Carbon Steel, 316 SS Threaded tees	0.5 to 2 in. versions Mounts on threaded pipe ends
PVC Glue-on Saddles	Available in 10 and 12 inch sizes only Cut 2-1/2 inch hole in pipe Weld in place using solvent cement	Carbon steel & stainless steel Weld-on Weldolets	2 to 4 inch, cut 1-7/16 inch hole in pipe Over 4 inch, cut 2-1/8 inch hole in pipe
PVC Saddles +	2 to 4 inch, cut 1-7/16 inch hole in pipe 6 to 8 inch, cut 2-1/8 inch hole in pipe	Fiberglass tees FPT	• 1.5 in. to 2 in. PVDF insert
Iron Strap-on saddles	 2 to 4 inch, cut 1-7/16 inch hole in pipe Over 4 inch, cut 2-1/8 inch hole in pipe Special order 14 in. to 36 in. 	Metric Union Fitting	For pipes from DN 15 to 50 mm PP or PVDF
Metric Wafer Fitting	For pipes DN65 to 200 mm PP or PVDF		

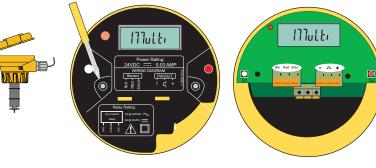
Installation

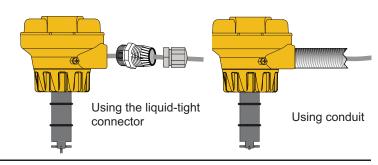
Plastic sensor installation tips


- Inspect the sensor O-rings for nicks and other damage that may compromise the seal.
- Lubricate O-rings with a non-petroleum based, viscous lubricant (grease) compatible with the system.
- Using an alternating/twisting motion, lower the sensor into the fitting, making sure the conduit ports on the yellow housing are pointing in the direction of flow.
- Engage one thread of the sensor cap then turn the sensor until the alignment tab is seated in the fitting notch.

HAND-TIGHTEN THE THREADED NUT ONTO THE IN-STALLATION FITTING. DO NOT USE TOOLS! DO NOT USE THREAD SEALANT OR LUBRICANTS ON THE FITTING THREADS OR THE SENSOR CAP.

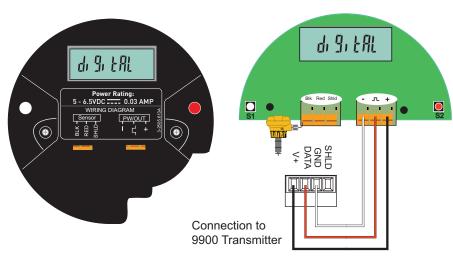
Dimensions

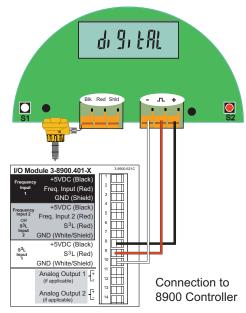



Wiring

Electrical connections to this product should be made only by qualified personnel.

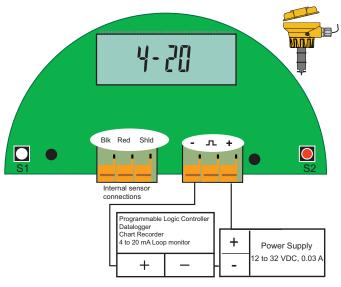
To access the wiring terminals:


- Turn yellow cap ¼ turn counterclockwise to remove.
- Remove the two retaining screws and remove the black cover
- Route all cables through the conduit ports before connecting them to the terminals.
- Wiring terminals are rated for 16 to 22 AWG conductors.
- The cable must be 7 to 10 mm in diameter (0.275 to 0.394 in.) to seal properly in the liquid tight connector.
- The conduit ports have ½ inch NPT threads. After routing the cables, seal the port with a liquid tight conduit connector (3-9000.392-1) or with conduit.
- · For conduit installations:
 - Thread conduit with ½ in. NPT threads directly into the conduit port.
 - For conduit with ISO threads, use the black thread adapter included with the connector kit.
 - To comply with NEC requirements, do not use any metal conduit in the installation.



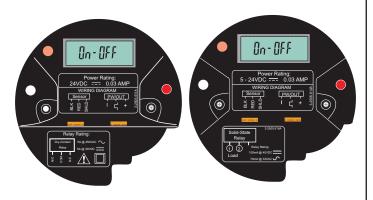
Wiring: Digital (S3L) Output

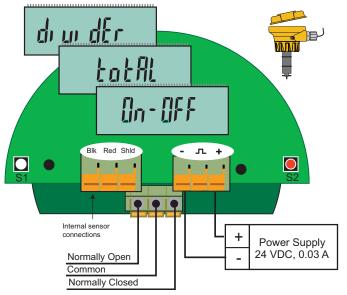
The Digital (S³L) output is compatible with the 3-8900 Multi-Parameter Controller and the 3-9900 Transmitter.



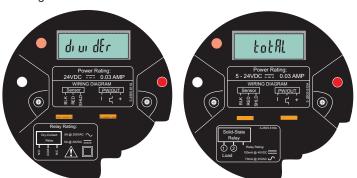
Wiring: 4 to 20 mA Output

The 4 to 20 mA output can be connected to Chart Recorders, PLCs or any device that requires a 4 to 20 mA signal.

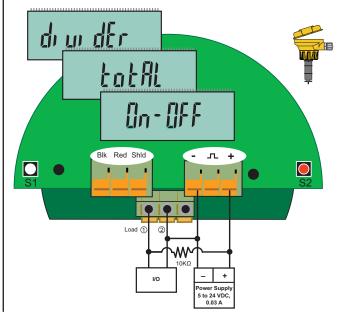

The 4 to 20 mA model requires an external power source of 12 to 32 VDC.


Wiring: Flow Switch Output (On-OFF)

- The Flow Switch mode allows a single relay that is programmable as a HIGH setpoint or LOW setpoint.
- The relay may be a dry-contact type or a solid state type.
- The dry contact relay requires an external power source of 24 VDC ± 10%.
- The solid state relay requires an external power source of 5 to 24 VDC.


Dry Contact Relay Wiring

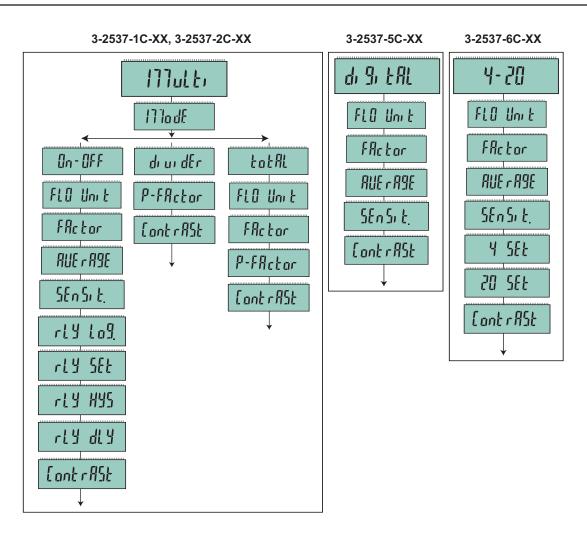
• The wiring is identical for On-OFF and Pulse modes.


Wiring: Pulse Output

- The "Multi" mode allows a single relay that is programmable as a Flow Switch, Volumetric pulse output or as a simple pulse divider output.
- The relay may be a dry-contact type or a solid state type.
- The Dry Contact Relay requires an external power source of 24 VDC ± 10%.
- The Solid State Relay requires an external power source of 5 to 24 VDC.
- Solid State Relay requires a pull-up resistor (10K ohm recommended). Consult your instrument/PLC manual for wiring information.

Solid State Relay Wiring

· The wiring is identical for On-OFF and Pulse modes.

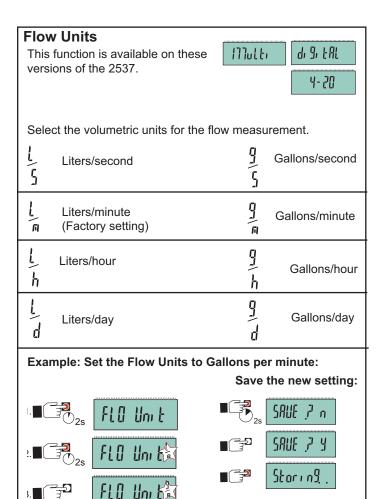

Operation

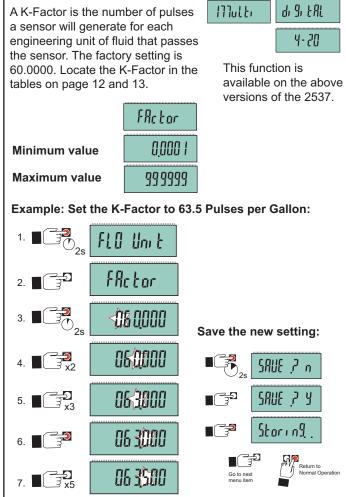
The 2537 Flowmeter is available in three different models. The programming menus vary significantly from one model to another.

This chart is provided inside the yellow cover to assist in navigating the menus in the 2537.

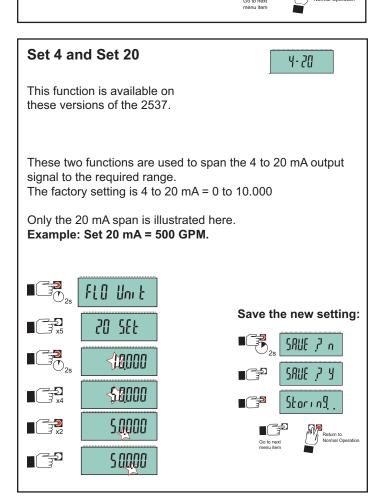
Mode	Action			
View	→ Display Flow Rate	\rightarrow Go to MENU	Go to VIEW	
Menu	1X → Next Menu	1X → Display Current Value	Previous Mode	
		→ Go to Edit Previous		
		1X → Shift digit to right	Previous Mode	
Edit	1X → Increment Value	→ Go to SAVE	Previous Mode	
SAVE	1X → Toggle	1X → Store Change	N/A	

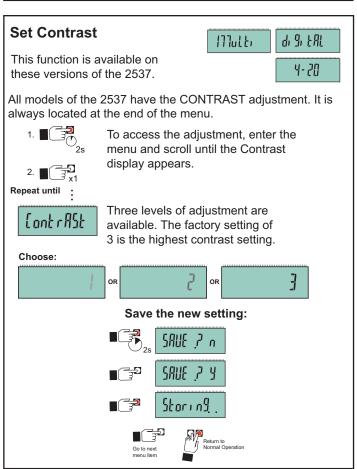
Menus


View Mode Function


- All models display the model name: $\textbf{Multi},\,\textbf{Digital}$ or 4-20.
- If the white key (\$1) is held down for three seconds, the flow rate is displayed for 10 minutes before reverting back to the model name.
 - In the **Multi** Model, if the "Multi" menu item is set to "divider", then the divided pulse output will be displayed in pulses/seconds (p/s).

Menu Details


This table shows the definition of each menu function, the setting parameters and the page where detailed instructions can be located.


Menu Function	Definition	Setting Parameters	More Information
Flow Unit	Liters or Gallons per sec, min., hour or day	See list on page 8	page 8
K-Factor	Set PULSES per VOLUME UNIT	0.0001 to 999999	page 8
Average	Smooths out erratic flow conditions	0 to 100 seconds	page 9
Sensitivity	Overrides Average for large rate changes	0 to 9	page 9
Mode	Select the output mode	Total or Divider or On-OFF	page 10
P-Factor	As PULSE DIVIDER, divides input freq.	1.0000 to 99999	page 10
P-Factor	As PULSE TOTAL, multiplies K-Factor	1.0000 to 99999	page 10
Relay Logic	Select Hi alarm or Lo alarm mode	Hi or Lo	page 11
Relay Set	Set Relay Setpoint	0.0000 to 99999	page 11
Relay Hysteresis	Rate inside Setpoint to DEENERGIZE relay	0.0000 to 99999	page 11
Relay Delay	Time delay before relay is ENERGIZED	0000.0 to 6400.0	page 11
4 Set	Set flow RATE to be represented by 4 mA	0.0000 to 99999	page 8
20 Set	Set flow RATE to be represented by 20 mA	0.0000 to 99999	page 8
Contrast	Adjust visibility of liquid crystal display	1 to 3	page 8

K-Factor

Averaging and Sensitivity Settings

- Because ideal flow conditions are often impossible to achieve, the flow rate is often erratic, which causes erratic readings in control features (e.g., relays, 4 to 20 mA loops, etc.) that are associated with the flow rate.
- The best solution to these problems is to correct any piping deficiency that causes the instability. This may involve longer straight
 runs upstream, reducing the pipe size to maintain a full pipe at all times, and other installation changes. In many situations, however,
 these measures are simply not possible.
- The 2537 meter provides two tools that are designed to "work around" these deficiencies. The Averaging and the Sensitivity features should be studied before making adjustments.

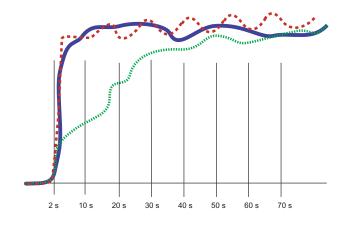
Averaging Time in Seconds (Factory set: 0 seconds)

- Set the time the meter will use as the averaging period. The range is from 0 (no average applied to input) to 100 (seconds of averaging applied to input).
 - Use higher averaging times to smooth the display and current output where the flow in the pipe is erratic.

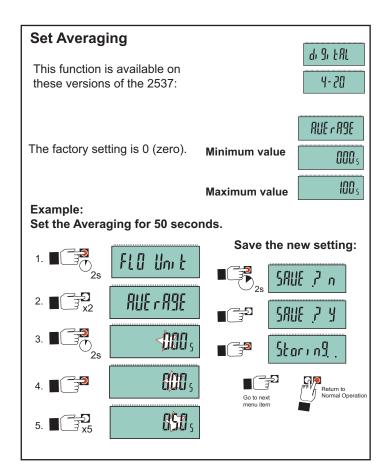
Quick Response Sensitivity (Factory set: 0)

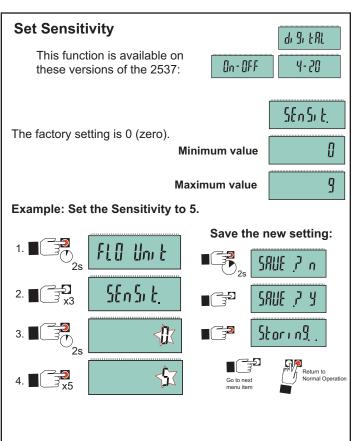
 Set the relative degree of change in the flow rate required to allow the 2537 to disable the AVERAGING and jump to a new flow rate immediately. The scale is from 0 (least sensitive, averaging is never disabled.) to 9 (a very small change in flow rate will disable the averaging).

■■■■ No AVERAGING, no SENSITIVITY


With AVERAGING set to 0 (zero) and with SENSITIVITY set to zero, the 2537 responds to every unstable shift in the flow. The dashed red line represents the actual output of the flow sensor in unstable flow conditions.

AVERAGING only


With AVERAGING set to 50 seconds and SENSITIVITY still set to zero the flow rate is stabilized, but a sharp change in flow rate is not represented for 50 seconds or longer (dotted green line).


AVERAGING and SENSITIVITY

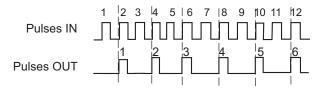
With AVERAGING at 50 seconds and SENSITIVITY set to 4 OR 5, the flow rate is stabilized, while the sudden shift in flow is reflected very quickly (solid blue line).

NOTE: The SENSITIVITY function is ineffective if the AVERAGING function is set to zero (seconds).

Mode

Multi

This function is available on these versions of the 2537:

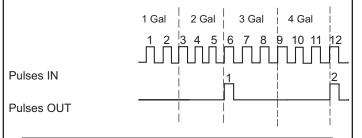

Select DIVIDER or TOTAL operation. The factory setting is TOTAL.

PULSE DIVIDER Output = Input pulses ÷ P-Factor

DIVIDER allows you to set a scaling value (P-Factor) from 1.0000 to 99999.

Example: If the P-Factor is set for 2, then the 2537 will output one pulse for every 2 pulses received from the sensor. This selection enables the output frequency to be scaled down to match associated equipment capabilities.

When using the PULSE DIVIDER output, associated equipment must divide the K-Factors in this manual by the P-Factor for correct calibration.


PULSE TOTAL Output = Input pulses ÷ (K-Factor × P-Factor)

TOTAL is a traditional pump pulser function. This selection will allow the entry of a K-Factor to define a volumetric unit, then set a P-Factor to define the number of volumetric units required to generate one pulse out.

Example:

Set the Total Pulse output so there is one pulse out for each 2 gallons that passes the sensor if the K-Factor is 3.0.

- 1. K-Factor = 3.0 (pulses in per gallon)
- 2. P-Factor = 2 (gallons out per pulse)

lilodf 2s lillodf 2s lillodf 2s lillodf

P-Factor

This function is available on these versions of the 2537:

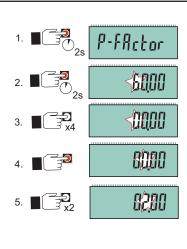
The factory setting is 1.0000

P-FActor

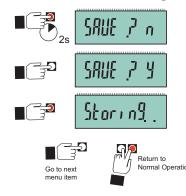
Minimum value

1,0000

Maximum value


99999

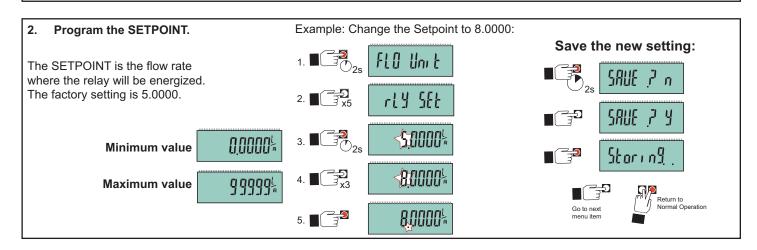
In PULSE DIVIDER mode the P-Factor divides:

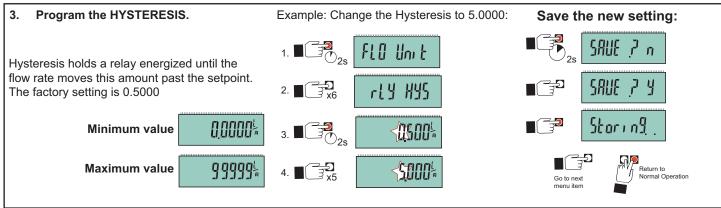

The pulse stream from the paddlewheel sensor will be divided by the P-Factor. The resulting frequency is output through a relay.

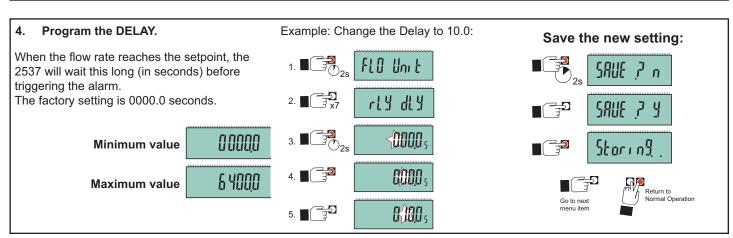
In PULSE TOTAL mode the P-Factor multiplies:

The pulse stream from the paddlewheel sensor is divided by the K-Factor MULTIPLIED by the P-factor. The resulting frequency is output through a relay.

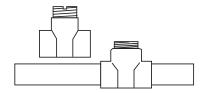
Save the new setting:



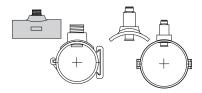

Set Relay Operation


The On-OFF mode has one relay (SPDT or solid-state) that can be programmed as a HIGH (Hi) alarm or a LOW (Lo) alarm.

1. Select HI or LO Relay Alarm logic A HI alarm will be activated when the flow rate rises ABOVE the setpoint. A LO alarm will be activated when the flow rate falls BELOW the setpoint. The factory setting is Hi(gh).



K-Factors


When using the PULSE DIVIDER mode, associated equipment must divide the K-Factors by the P-Factor.

A **K-Factor** is the number of pulses a sensor will generate for each engineering unit of fluid that passes the sensor. K-Factors for water are listed below in U.S. gallons and liters. For example, in a 1 inch SCH 80 PVC pipe, using the MPV8T010 PVC fitting, the 2537 paddlewheel generates 335.53 pulses per gallon of water passing the rotor.

Molded Tees

PIPE	PIPE		ENSOR
SIZE (IN.)	FITTING	U.S. GAL	LITERS
SCH 80 M	OLDED TEES F	OR SCH 80	PVC PIPE
1/2	MPV8T005F MPV8T005 MCPV8T005F	1027.1	271.37
3/4	MPV8T007F MPV8T007 MCPV8T007F	583.19	154.08
1	MPV8T010F MPV8T010 MCPV8T010F	335.53	88.65
1-1/4	MPV8T012F MPV8T012 MCPV8T012F	178.79	47.24
1-1/2	MPV8T015F MPV8T015 MCPV8T015F	121.42	32.08
2	MPV8T020F MPV8T020 MCPV8T020F	71.44	18.87
2-1/2	PV8T025	42.994	11.359
3	PV8T030	26.652	7.0414
4	PV8T040	15.006	3.9645

Saddles

PIPE		2537 8	SENSOR
SIZE (IN.)	FITTING	U.S. GAL	LITERS
SCH 80 P	VC SADDLES F	OR SCH 80	PVC PIPE
2	PV8S020	66.739	17.633
2-1/2	PV8S025	42.994	11.359
3	PV8S030	26.652	7.0414
4	PV8S040	15.006	3.9645
6	PV8S060	8.3246	2.1994
8	PV8S080	5.0164	1.3253
SCH 80 P	VC SADDLE ON	SCH 40 P\	/C PIPE
2	PV8S020	54.700	14.452
2-1/2	PV8S025	37.159	9.8175
3	PV8S030	23.697	6.2608
4	PV8S040	13.456	3.5552
6	PV8S060	7.4594	1.9708
8	PV8S080	4.5292	1.1966

Metal Tees

PIPE		2537	SENSOR			
SIZE (IN.)	FITTING	U.S. GAL	LITERS			
CARBON STEEL TEES ON SCH 40 PIPE						
1/2	CS4T005	756.00	199.74			
3/4	CS4T007	438.69	115.90			
1	CS4T010	286.78	75.768			
1-1/4	CS4T012	121.22	32.026			
1-1/2	CS4T015	91.139	24.079			
2	CS4T020	54.468	14.391			
STAINLE	SS STEEL T	EES ON S	CH 40 PIPE			
1/2	CR4T005	734.20	193.98			
3/4	CR4T007	412.10	108.88			
1	CR4T010	252.70	66.764			
1-1/4	CR4T012	128.12	33.849			
1-1/2	CR4T015	77.320	20.428			
2	CR4T020	45.780	12.095			
GALVANI	ZED IRON T	EES ON S	CH 40 PIPE			
1	IR4T010	213.01	56.277			
1-1/4	IR4T012	127.75	33.751			
1 1/2	IR4T015	94.401	24.941			
2	IR4T020	59.420	15.699			
BRONZE	TEES ON S	CH 40 PIPI				
1	BR4T010	213.01	56.277			
1-1/4	BR4T012	127.75	33.751			
1-1/2	BR4T015	94.401	24.941			
2	BR4T020	59.420	15.699			
COPPER SCH K	TEE FITTING	GS ON CO	PPER PIPE			
1/2	CUKT005	917.84	242.50			
3/4	CUKT007	428.27	113.15			
1	CUKT010	256.43	67.749			
1-1/4	CUKT012	176.44	46.615			
1-1/2	CUKT015	115.69	30.565			
2	CUKT020	63.385	16.746			
COPPER TEE FITTINGS ON COPPER PIPE SCH L						
1/2	CUKT005	858.22	226.74			
3/4	CUKT007	385.74	101.91			
1	CUKT010	241.64	63.841			
1-1/4	CUKT012	170.90	45.152			
1-1/2	CUKT015	112.03	29.598			
2	CUKT020	61.74	16.310			

K-Factors

Union Tees

PIPE	FITTING	2537 8	SENSOR
SIZE	FILLING	U.S. GAL	LITERS
POLYPRO	OPYLENE TI	EES (DIN/ISO AN	ID BS AND ANSI)
DN15	PPMT005	952.87	251.75
DN20	PPMT007	563.10	148.77
DN25	PPMT010	291.60	77.042
DN32	PPMT012	169.22	44.709
DN40	PPMT015	103.90	27.450
DN50	PPMT020	60.789	16.060
DN65	PPMT025	41.498	10.964
DN80	PPMT030	26.786	7.0769
DN100	PPMT040	17.415	4.6011
DN125	PPMT050	10.168	2.6864
DN150	PPMT060	7.3119	1.9318
DN200	PPMT080	3.9946	1.0554

Union Tees

PIPE FITTING		2537 SENSOR	
SIZE	FITTING	U.S. GAL	LITERS
PVDF FIT	TINGS (DIN	ISO AND BS AN	D ANSI)
DN15	SFMT005	827.26	218.56
DN20	SFMT007	489.87	129.42
DN25	SFMT010	283.55	74.915
DN32	SFMT012	158.59	41.899
DN40	SFMT015	86.980	22.980
DN50	SFMT020	50.385	13.312
PVC FITT	INGS (DIN/I	SO) - EUROPE O	NLY
DN15	PVMT005	972.37	256.90
DN20	PVMT007	485.69	128.32
DN25	PVMT010	297.27	78.540
DN32	PVMT012	170.25	44.980
DN40	PVMT015	103.71	27.400
DN50	PVMT020	59.500	15.720
DN65	PVMT025	34.973	9.2400
DN80	PVMT030	24.981	6.6000
DN100	PVMT040	16.275	4.3000
DN150	PVMT060	8.1756	2.1600
DN200	PVMT080	4.0878	1.0800

Wafer Fittings

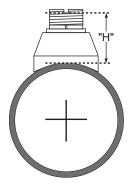
PIPE		2537 SENSOR				
SIZE	FITTING	U.S. GAL	LITERS			
POLYPRO	POLYPROPYLENE WAFER FITTINGS (DIN/ISO)					
DN65	PPMTE025 PPMTF025	41.498	10.964			
DN80	PPMTE030 PPMTF030	26.786	7.0769			
DN100	PPMTE040 PPMTF040	17.415	4.6011			
DN125	PPMTE050 PPMTF050	10.168	2.6864			
DN150	PPMTE060 PPMTF060	7.3119	1.9318			
DN200	PPMTE080 PPMTF080	3.9946	1.0554			
PVDF WA	FER FITTING	S (DIN/ISO)				
DN65	SFMTF025	36.133	9.5465			
DN80	SFMTF030	24.715	6.5297			
DN100	SFMTF040	16.120	4.2589			
DN125	SFMTF050	8.8624	2.3415			
DN150	SFMTF060	6.4543	1.7052			
DN200	SFMTF080	4.0720	1.0758			

Weldolets and Brazolets

PIPE		2537	SENSOR
SIZE (IN.)	FITTING	U.S. GAL	LITERS
STAINLE	SS STEEL W	ELDOLETS C	N SCH 40 PIPE
2-1/2	CR4W025	37.600	9.9339
3	CR4W030	24.340	6.4306
4	CR4W040	13.920	3.6777
5	CR4W050	10.860	2.8692
6	CR4W060	7.5200	1.9868
8	CR4W080	4.3400	1.1466
CARBO	STEEL WEL	DOLETS ON	SCH 40 PIPE
2-1/2	CS4W025	37.600	9.9339
3	CS4W030	24.340	6.4306
4	CS4W040	13.920	3.6777
5	CS4W050	10.860	2.8692
6	CS4W060	7.5200	1.9868
8	CS4W080	4.3400	1.1466
COPPER	R/BRONZE BR	AZOLETS O	N SCH 40 PIPE
2-1/2	BR4B025	37.600	9.934
3	BR4B030	24.340	6.431
4	BR4B040	13.920	3.678
5	BR4B050	10.860	2.869
6	BR4B060	7.5200	1.987
8	BR4B080	4.3400	1.147

Iron Saddles

PIPE	PIPE SIZE FITTING		SENSOR
(IN.)	FILLING	U.S. GAL	LITERS
SCH 80 I	RON SADDLE	S ON SCH 8	0 PIPE
2	IR8S020	64.720	17.099
2-1/2	IR8S025	42.480	11.223
3	IR8S030	26.420	6.980
4	IR8S040	14.700	3.884
5	IR8S050	12.180	3.218
6	IR8S060	8.4400	2.230
8	IR8S080	4.9000	1.295
SCH 80 I	RON SADDLE	ON SCH 40	PIPE
2	IR8S020	53.640	14.172
2-1/2	IR8S025	37.600	9.934
3	IR8S030	23.220	6.135
4	IR8S040	13.260	3.503
5	IR8S050	11.040	2.917
6	IR8S060	7.2400	1.913
8	IR8S080	4.4000	1.162

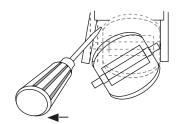


H-Dimensions

The plastic insert in Weldolet fittings MUST be removed during the welding process. When reinstalled, it is important that the insert be threaded to the proper height ("H" dimension).

Weldolet	"H" dimension	
Part number	inches	mm
CS4W020	2.38	60.45
CS4W025	2.33	59.18
CS4W030	2.32	58.92
CS4W040	2.30	58.42
CS4W050	3.09	78.48
CS4W060	2.96	75.18
CS4W080	2.73	69.34

Weldolet	"H" dimension	
Part number	inches	mm
CR4W020	2.38	60.45
CR4W025	2.33	59.18
CR4W030	2.32	58.92
CR4W040	2.30	58.42
CR4W050	3.09	78.48
CR4W060	2.96	75.18
CR4W080	2.73	69.34


Maintenance and Cleaning

The 2537 requires very little maintenance.

- If the paddlewheel becomes fouled, it can be cleaned with mild detergents and a small brush.
- The electronics portion of the 2537 does not require maintenance or cleaning.

Rotor Replacement Procedure

- 1. To remove the rotor, insert a small screwdriver between the rotor and the ear of the sensor.
- 2. Twist the screwdriver blade to flex the ear outward enough to remove one end of the rotor and pin. DO NOT flex the ear any more than necessary! If it breaks, the sensor cannot be repaired.
- 3. Install the new rotor by inserting one tip of the pin into the hole, then carefully flex the opposite ear back enough to slip rotor into place.

Notes

Ordering Information

	Mfr. Part No.	Code	Description			
2537 system for 0.5 in. to 4 in. pipes, with polypropylene body, Black PVDF rotor, Titanium pin, FPM O-rin						
	3-2537-1C-P0	159 001 291	Pulse/Flow Switch, DCR, -P0, Integral Mount			
	3-2537-2C-P0	159 001 292	Pulse/Flow Switch, SSR, -P0, Integral Mount			
	3-2537-5C-P0	159 001 295	Digital (S³L), Integral Mount			
	3-2537-6C-P0	159 001 296	4 to 20 mA, Integral Mount			
2537 system for 5 in. to 8 in. pipes, with polypropylene body, Black PVDF rotor, Titanium pin, FPM O-rings						
	3-2537-1C-P1	159 001 303	Pulse/Flow Switch, DCR, -P1, Integral Mount			
	3-2537-2C-P1	159 001 304	Pulse/Flow Switch, SSR, -P1, Integral Mount			
	3-2537-5C-P1	159 001 307	Digital (S ³ L), Integral Mount			
	3-2537-6C-P1	159 001 308	4 to 20 mA, Integral Mount			
	2537 system for 0.5 in. to 4 in. pipes, with natural PVDF body, rotor and pin, FPM O-rings					
	3-2537-1C-T0	159 001 315	Pulse/Flow Switch, DCR, -T0, Integral Mount			
	3-2537-2C-T0	159 001 316	Pulse/Flow Switch, SSR, -T0, Integral Mount			
	3-2537-5C-T0	159 001 319	Digital (S ³ L), Integral Mount			
	3-2537-6C-T0	159 001 320	4 to 20 mA, Integral Mount			

Accessories

Accessories		
Mfr. Part No.	Code	Description
3-2536.320-1	198 820 052	Rotor, PVDF Black
3-2536.320-2	159 000 272	Rotor, PVDF Natural
3-2536.320-3	159 000 273	Rotor, ETFE
3-2536.321	198 820 054	Rotor and Pin, PVDF Natural
3-2536.322-1	198 820 056	Sleeved Rotor, PVDF Black
3-2536.322-2	198 820 057	Sleeved Rotor, PVDF Natural
3-2536.322-3	198 820 058	Sleeved Rotor, ETFE
M1546-1	198 801 182	Rotor Pin, Titanium
M1546-2	198 801 183	Rotor Pin, Hastelloy-C
M1546-3	198 820 014	Rotor Pin, Tantalum
M1546-4	198 820 015	Rotor Pin, Stainless Steel
P51545	198 820 016	Rotor Pin, Ceramic
1220-0021	198 801 186	O-Ring, FPM
1224-0021	198 820 006	O-Ring, EPDM
1228-0021	198 820 007	O-Ring, FFPM
P31536	198 840 201	Sensor Plug, Polypro
3-8050.390-1	159 001 702	Retaining Nut Replacement Kit, NPT, Valox®
3-8050.390-3	159 310 116	Retaining Nut Replacement Kit, NPT, PP
3-8050.390-4	159 310 117	Retaining Nut Replacement Kit, NPT, PVDF
3-8050.391	159 001 703	Retaining Nut Replacement Kit, NPT, Stainless Steel
3-9000.392-1	159 000 839	Liquid tight connector kit, NPT (1 piece)
3-9000.392-2	159 000 841	Liquid tight connector kit, PG 13.5 (1 piece)
3-9000.392-3	159 001 430	Liquid-tight connector kit, dual-cable gland
7300-7524	159 000 687	24 VDC Power Supply 7.5 W, 300 mA
7300-1524	159 000 688	24 VDC Power Supply 15 W, 600 mA
7300-3024	159 000 689	24 VDC Power Supply 30 W, 1.3 A
7300-5024	159 000 690	24 VDC Power Supply 50 W, 2.1 A
7300-1024	159 000 691	24 VDC Power Supply 100 W, 4.2 A

Georg Fischer Signet LLC, 3401 Aerojet Avenue, El Monte, CA 91731-2882 U.S.A. • Tel. (626) 571-2770 • Fax (626) 573-2057 For Worldwide Sales and Service, visit our website: www.gfsignet.com • Or call (in the U.S.): (800) 854-4090 For the most up-to-date information, please refer to our website at www.gfsignet.com