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1 Continuous Fourier Transforms

You're probably familiar with the continuous Fourier transform

z(f) = /OO dt x(t) g2 f(t—to) (1.1)
and its inverse
x(t) = /OO df Z(f) e2/(t=to) (1.2)

Notes:

e Lots of conventions, but note using f instead of w gets rid of
annoying 27 normalizations.

o If x(t) is really a function of time, the origin/epoch ¢y is arbi-
trary and has no physical meaning. If it’s a function of time
difference, then ty = 0 makes sense.

The identity
/ df €271 — §5(t —t') (1.3)

o0

is useful for proving properties of continuous Fourier transforms.

2 Discrete Fourier Transforms

Real data is neither continuous nor infinite in duration. Consider
discretely-sampled time series data of duration T = Ndt:

x; = x(t;) = x(t + jot) j=0,1,...,N—1 (2.1)

Its discrete Fourier transform is
N-1 N-1
/x\k — Z T e*ZQWfk(tj*to) — Z T 67227r]k/N (22)
j=0 Jj=0

where f, = kdf, and
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We can define 7y, for any integer k, but there are only N indepen-
dent values, thanks to the identifications

TNk = Tk always (2.4a)
T_p =T, if {x;} real (2.4Db)

This means, for a real time series {z;}, the N real numbers in the
Fourier domain are (assuming N even)



e 1 real value xg

N _

® 5

2 complex values {zy|k =1,...5 — 1}
e 1 real value x_n/2 = wn/2

The identity

N—1
€i27r(j7f)k‘/N — Néjj mod N (25)
k=0
shows us the inverse transform
| N 1 N/2-1
T = N Th ei27rjk/N _ Z Ty eiQﬂjk/N (26)
k=0 k=—N/2

If we consider (2.2)) to be an approximation of the integral in (1.1),
we’d identify
5T ~ T(fi) (2.7)

If we plug ([1.2)) into (2.2)) we can get the actual formula

td= [ dfbwalfe - DRQ) (2.8)
with a kernel
N-1
Ongt(x) = ot Z et (2.9)
=0

this is not quite a Dirac delta function for two reasons:

1

51> S0 it’s peaked at z = 0, z = 5

1. It is periodic with period

- _1
r = —j;, etc.

2. It has an oscillatory “ringing” behavior around its peaks.

The second point is related to an issue known as spectral leakage
which we won’t go into; the first is known as aliasing, and it means
that actually 0t %y, is a sum of not only h(f) but also h(fi + 5),

h(fe— =) = E*(é — fx), etc. This means that to avoid confusion of

different frequency components, the original time series h(t) should
have undergone some analog processing so that h(f) is negligible

unless
1 1

20t / 20t
which defines the Nyquist frequency fny, = ﬁ which is half the
sampling rate é.

(2.10)

3 Random Data

We'll often be interested in cases where the data {z;} are random
with some mean and variance defined by the expectation values

Elx;] = p; (3.1)

Bl = 03, (3.2)

If the data are Gaussian, these are enough to define a probability
density

P(x) = (det 2mo?) /% exp (—%(x — ) o (x — u)) (3.3)

where x and g are column vectors made up out of {z;} and {y;},
respectively, o2 is a matrix made of {o;,} and o2 is its inverse.
For simplicity we’ll assume the data have zero mean. We’ll also
start in the continuous picture; the random process associated with
x(t) is stationary if

Ela(t),2(t)] = Ku(t — t') (3.4)



which defines the autocorrelation function K, (t —¢') (in general it
would have to be written K,(¢,t')). The Fourier transform of the
autocorrelation function is the two-sided power spectral density

Sz—sided(f> _ /OO dr Kx(T) €—i27rf7— (35>
We can use to show that, formally,
EE(f') @(f)] = o(f = f) S4(f) (3.6)
Since SFsided () = §2sided(_ £ for real z(t), define one-sided PSD
B Sg—sided“)) f =0
Sm(f) - {SZ—sided<_f) + SQ—Sided(f) f >0 (37>

Unfortunately (?7) this is what most GW observers mean by PSD,
so formulas have an extra factor of two (S, (f) = 28%514°d(f)), e.g.,

E[z(f) 2()] = 6(f = 1) @

We can translate this into a discrete Fourier transform; just as
Ty ~ Z(fx), we can show

B3] ~ 25 5.(fi) (39

with the usual caveats about leakage and aliasing. Now consider
the case of zero-mean Gaussian data: let T, = &, + i and treat
o, {&ksmilk=1... % — 1}, £ny2 as independent and Gaussian with

B[] = B[] = of = 1,5.(f) (3.10)

so probability density is

Plgenli=1.. Y 1= I -2 C
=1...——1}) = exp | —=25% — =5
ko Tk 2 Pl 27r0,% P 20,% 20,%

(3.8)

with log-likelihood

NJ2— N/2—1 ~ ~
" o6t xk|2 Z(fi)|? > EP
= - 26 ~ —2 d
D > Wi~ Vs
(3.12)
This means
P(r) x ¢~ 2tl) (3.13)
where the inner product is
B = () =)
@m_4mé i (3.14)

The unfamiliar factor of 4 is one factor of 2 because the integral
is only over positive frequencies and one because of the use of the
one-sided power spectral density.

If the data vary slowly over the observation time, it may be
useful to divide it into pieces of length T" and Fourier transform
each of them

tro+71 ]
Tr(f) = / dt z(t) e~ 2S (= to) (3.15)
t

10

In principle, the statistical properties of different segments will be
related because of the autocorrelation function K (t—t'). But if the
correlation length—the time over which K(7) is non-negiligible—is
small compared to T', we can neglect this, and the log likelihood
function would become P(z) o< @) with

Iy fl 2
A= —2Rez]:/0 df% (3.16)



	Continuous Fourier Transforms
	Discrete Fourier Transforms
	Random Data

