
Fourier Analysis and Signal Processing

John T. Whelan

School of Gravitational Waves, Warsaw, 2013 July 4

1 Continuous Fourier Transforms

You’re probably familiar with the continuous Fourier transform

x̃(f) =

∫ ∞
−∞

dt x(t) e−i2πf(t−t0) (1.1)

and its inverse

x(t) =

∫ ∞
−∞

df x̃(f) ei2πf(t−t0) (1.2)

Notes:

• Lots of conventions, but note using f instead of ω gets rid of
annoying 2π normalizations.

• If x(t) is really a function of time, the origin/epoch t0 is arbi-
trary and has no physical meaning. If it’s a function of time
difference, then t0 = 0 makes sense.

The identity ∫ ∞
−∞

df ei2πf(t−t′) = δ(t− t′) (1.3)

is useful for proving properties of continuous Fourier transforms.

2 Discrete Fourier Transforms

Real data is neither continuous nor infinite in duration. Consider
discretely-sampled time series data of duration T = Nδt:

xj = x(tj) = x(t+ jδt) j = 0, 1, . . . , N − 1 (2.1)

Its discrete Fourier transform is

x̂k =
N−1∑
j=0

xj e
−i2πfk(tj−t0) =

N−1∑
j=0

xj e
−i2πjk/N (2.2)

where fk = kδf , and

δf δt =
δt

T
=

1

N
. (2.3)

We can define x̂k for any integer k, but there are only N indepen-
dent values, thanks to the identifications

x̂N+k = x̂k always (2.4a)

x̂−k = x̂∗k if {xj} real (2.4b)

This means, for a real time series {xj}, the N real numbers in the
Fourier domain are (assuming N even)
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• 1 real value x0

• N
2
− 2 complex values {xk|k = 1, . . . N

2
− 1}

• 1 real value x−N/2 = xN/2

The identity
N−1∑
k=0

ei2π(j−`)k/N = N δj,` mod N (2.5)

shows us the inverse transform

xj =
1

N

N−1∑
k=0

x̂k e
i2πjk/N =

1

N

N/2−1∑
k=−N/2

x̂k e
i2πjk/N (2.6)

If we consider (2.2) to be an approximation of the integral in (1.1),
we’d identify

δt x̂k ∼ x̃(fk) (2.7)

If we plug (1.2) into (2.2) we can get the actual formula

δt x̂k =

∫ ∞
−∞

df δN,δt(fk − f)h̃(f) (2.8)

with a kernel

δN,δt(x) = δt
N−1∑
j=0

e−i2πjδt x (2.9)

this is not quite a Dirac delta function for two reasons:

1. It is periodic with period 1
δt

, so it’s peaked at x = 0, x = 1
δt

,
x = − 1

δt
, etc.

2. It has an oscillatory “ringing” behavior around its peaks.

The second point is related to an issue known as spectral leakage
which we won’t go into; the first is known as aliasing, and it means
that actually δt x̂k is a sum of not only h̃(fk) but also h̃(fk + 1

δt
),

h̃(fk− 1
δt

) = h̃∗( 1
δt
−fk), etc. This means that to avoid confusion of

different frequency components, the original time series h(t) should

have undergone some analog processing so that h̃(f) is negligible
unless

− 1

2 δt
< f <

1

2 δt
(2.10)

which defines the Nyquist frequency fNy = 1
2 δt

which is half the
sampling rate 1

δt
.

3 Random Data

We’ll often be interested in cases where the data {xi} are random
with some mean and variance defined by the expectation values

E[xj] = µj (3.1)

E[xjx`] = σ2
j` (3.2)

If the data are Gaussian, these are enough to define a probability
density

P (x) = (det 2πσ2)−1/2 exp

(
−1

2
(x− µ)Tσ−2(x− µ)

)
(3.3)

where x and µ are column vectors made up out of {xj} and {µj},
respectively, σ2 is a matrix made of {σj`} and σ−2 is its inverse.
For simplicity we’ll assume the data have zero mean. We’ll also
start in the continuous picture; the random process associated with
x(t) is stationary if

E [x(t), x(t′)] = Kx(t− t′) (3.4)
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which defines the autocorrelation function Kx(t− t′) (in general it
would have to be written Kx(t, t

′)). The Fourier transform of the
autocorrelation function is the two-sided power spectral density

S2-sided
x (f) =

∫ ∞
−∞

dτ Kx(τ) e−i2πfτ (3.5)

We can use (1.3) to show that, formally,

E [x̃(f ′)∗ x̃(f)] = δ(f − f ′)S2-sided
x (f) (3.6)

Since S2-sided
x (f) = S2-sided

x (−f), for real x(t), define one-sided PSD

Sx(f) =

{
S2-sided
x (0) f = 0

S2-sided
x (−f) + S2-sided

x (f) f > 0
(3.7)

Unfortunately (?) this is what most GW observers mean by PSD,
so formulas have an extra factor of two (Sx(f) = 2S2-sided

x (f)), e.g.,

E [x̃(f)∗ x̃(f)] = δ(f − f ′) Sx(f)

2
(3.8)

We can translate this into a discrete Fourier transform; just as
x̂k ∼ x̃(fk), we can show

E
[
|x̂k|2

]
∼ N

2δt
Sx(fk) (3.9)

with the usual caveats about leakage and aliasing. Now consider
the case of zero-mean Gaussian data: let x̂k = ξk + iηk and treat
ξ0, {ξk, ηk|k = 1 . . . N

2
−1}, ξN/2 as independent and Gaussian with

E
[
ξ2
k

]
= E

[
η2
k

]
= σ2

k =
N

4δt
Sx(fk) (3.10)

so probability density is

P ({ξk, ηk|k = 1 . . .
N

2
− 1}) =

N/2−1∏
k=1

1

2πσ2
k

exp

(
− ξ2

k

2σ2
k

− η2
k

2σ2
k

)
∝ exp(Λ)

(3.11)

with log-likelihood

Λ ∼ −
N/2−1∑
k=1

2δt

N

|x̂k|2

Sx(fk)
∼ −

N/2−1∑
k=1

2δf
|x̃(fk)|2

Sx(fk)
∼ −2

∫ ∞
0

df
|x̃(f)|2

Sx(f)

(3.12)
This means

P (x) ∝ e−
1
2
〈x|x〉 (3.13)

where the inner product is

〈y|z〉 = 4 Re

∫ ∞
0

df
ỹ∗(f) z̃(f)

Sx(f)
(3.14)

The unfamiliar factor of 4 is one factor of 2 because the integral
is only over positive frequencies and one because of the use of the
one-sided power spectral density.

If the data vary slowly over the observation time, it may be
useful to divide it into pieces of length T and Fourier transform
each of them

x̃I(f) =

∫ tI0+T

tI0

dt x(t) e−i2πf(t−tI0) (3.15)

In principle, the statistical properties of different segments will be
related because of the autocorrelation function K(t−t′). But if the
correlation length–the time over which K(τ) is non-negiligible–is
small compared to T , we can neglect this, and the log likelihood
function would become P (x) ∝ eΛ(x) with

Λ = −2 Re
∑
I

∫ fNy

0

df
|x̃I(f)|2

SI(f)
(3.16)
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