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Abstract

A promising source of gravitational waves (GWs), detectable by LIGO
and VIRGO observatories, are coalescing binary black holes (BBHs).
Searches for coalescing BBHs employ the technique of matched filter-
ing in which theoretical predictions of the waveform signal are used
to filter the data. Therefore, these searches rely crucially on an accu-
rate GW model for detection. BHs in binaries may have significant
spins and the effect of spin is encoded in the waveform. Here we
explore the benefits of including the effects of spin aligned with or-
bital angular momentum in the search of GWs from coalescing BBHs.
We show that for the advanced LIGO high power zero-detuned sen-
sitivity in the mass range of [40, 125]M� and for effective spin χ ∈
[0.0, 0.85] the inclusion of spin-aligned effects can increase the mean
sensitive distance by up to ∼ 40%

1 Overview

The detection of GWs will serve as a new probe into the universe with pos-
sibilities for bringing insight into some of the most interesting questions in
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physics and astronomy. Because of the weak interaction of GWs with mat-
ter the astronomical sources for GW detection are required to be extremely
luminous in gravitational radiation [1]. Of particular interest to the LIGO
community is the coalescing binary black hole (BBH) system whose grav-
itational waveform should be readily detectable by ground based detec-
tors.

Coalescing BBHs evolve through three distinct phases: the inspiral,
merger, and ringdown phases (IMR). The inspiral phase ends once the sys-
tem has reached the innermost stable circular orbit (ISCO). The merger
phase occurs when the bodies combine, colliding at near the speed of light,
into a single BH[2]. The ringdown phase is the result of asymmetry in the
resultant single BH. From this asymmetry, the BH emits gravitational ra-
diation until it decays into a stationary Kerr state. The gravitational ra-
diation it emits is dependent upon the mass and spin of the final BH[3].
Imprinted onto the GW are the BH’s mass, spin, sky location, and distance
from Earth[4].

The core technique in GW data pipeline processing for searches of com-
pact binaries is the use of matched filtering[1]. Post-Newtonian (PN) and
numerical relativity (NR) techniques are employed to create waveform
templates from the predictions of GWs for CBCs. Computationally gener-
ated over a range of binary component parameter space, these waveform
templates are utilized as filters for the data stream of a detector. Overlap
between a waveform template in the filter and a waveform from the data
stream, that reaches a certain threshold, will result in a potential detec-
tion. Matched filtering is the optimal approach to successful detections
with Gaussian-distributed background noise.

It is expected that BBHs in nature will have significant spin. Of those
that evolve in isolation, it is thought that they will have significant non−
precessing spin (spin aligned with orbital angular momentum). Therefore,
including spin effects in our matched template filters becomes a necessity
in order to effectively detect these gravitational waveforms.

Previously, the only template banks available to the gravitational wave
community were ones in which the model waveforms did not include
the effects of spin. Eventually, other waveform models became available
that included spin for the inspiral phase only. In 2008, results were pub-
lished on the first data search (LIGO’s science run 3) for GWs from CBCs
that included the effects of spin-induced orbital precession for the inspi-
ral phase [5]. In 2013, results were published on a search for GW signals
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from coalescence of high-mass BBHs without spin of data from LIGO’s
sixth science run (S6) and Virgo’s second (VSR2) and third (VSR3) science
runs. The data were match filtered against a template bank of waveforms,
called EOBNRv1, that included all three phases of coalescence but with-
out including the effects of spin. As part of their results, an evaluation
of sensitivity was performed using the IMRPhenomB waveform family
that included spin-aligned effects[6] for all three phases. It was found that
there was a loss in sensitivity for injections with spin most likely due to a
reduction in overlap of the EOBNRv1 templates with the simulated IMR-
PhenomB injections[6].

New to the gravitational wave community are template models that
include aligned spin for all three phases (IMR). While the inspiral and
ringdown stages of the BBH coalescence can be modeled analytically, the
merger stages must be modeled numerically[7]. Therefore, to construct a
template waveform that includes all three stages, both the analytical and
numerical models must be combined[7]. The addition of spin to these
models contributes an additional six parameters (three for each BH). This
leads to significantly higher SNR[7].

2 Effectualness of Template Banks without Spin
for Detecting Signals with Spin

2.1 IMRPhenomB

The waveform family considered for this study is a phenomenological fit
to the post-Newtonian (PN) and numerical relativity (NR) hybrid wave-
forms outlined in [7]. They cover all three phases of coalescence, include
the effects of aligned spin, and are collectively called IMRPhenomB.

Degeneracies in the physical parameters [7] allow IMRPhenomB to be
parameterized by only the total mass of the binary

M ≡ m1 + m2,

the symmetric mass ratio
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η ≡ m1m2/M2,

and a single spin parameter, or effective spin χ, where

χ ≡ a1m1 + a2m2

M
,

and

ai ≡ Si/m2
i ,

with Si the spin angular momentum of the ith BH[7]. In equal mass sys-
tems, χ (in the physical range from -1 to 1) is the dominant spin effect on
the waveform and is the mass-weighted total spin of the system [7].

2.2 Constructing a Template Bank

Our template filter bank contains IMRPhenomB waveforms that cover a
discrete range of parameters to filter GW data that covers a continuous
range of parameter space. For our parameters we consider the masses of
the binary components and the effective spin parameter χ. IMRPhenomB
is expected to be accurate only for low to moderate mass ratios and spins
[8]. We therefore restrict our study to mass ratios of 1 ≤ m1

m2
≤ 4 and

χ ∈ [−0.5, 0.85].
We used a stochastic method to construct our template bank in which

templates are proposed to the bank randomly. Let a template bank be
denoted by B = {ĥi}N

i=1, and ĥ1 be a normalized waveform so that 〈ĥ1|ĥ1〉 =
1. A target waveform with arbitrary source parameters is given by ĥ~λ.
Then, overlap between waveforms in the bank and waveforms proposed
to the bank is measured by a fitting factor,

FF(~λ; B) = maxi,t〈ĥi|ĥ~λ〉,

4



maximized over all templates in the bank and over all time translations [8].
Arbitrary source parameters (target waveofms) are indicated by~λ. For our
template bank to be considered an effectual filter of signal it must achieve
a mean fitting factor (MFF) of 0.97 with our target waveforms, where our
target waveforms are considered.

2.3 Non-Spinning Template Filter Bank vs. Spinning Tem-
plates

In order to determine the parameter space in which including the effects of
spin in our filter template bank would be most effective we calculated the
MFF for a non-spin bank against spinning target waveforms. Our template
mass range was M ∈ [40, 350]M�. We chose a low frequency cutoff of
f = 10 Hz due to a sharp rise in noise in the advanced LIGO sensitivity
curves (figure 1). For our target waveforms we cover the same mass range
and a χ range of [−0.5, 0.85].

Figure 1: Advanced LIGO total noise curves for different configurations.

In figure 2 we show the MFF as a function of the total mass of the binary
and the effective spin χ. The MFF is a direct measure of recoverable signal-
to-noise-ratio (SNR, see appendix). Figure 2 shows that for systems with
negative values of χ there is no significant loss in SNR with a non-spin
bank. Also, for systems with positive χ values and larger total mass (&
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150 M�), the loss of SNR decreases. We therefore choose to focus further
study on systems where χ ∈ [0.0, 0.85] and M ∈ [40.0, 125]M�.

(a) (b)

Figure 2: For a non-spin template bank (a) systems with negative χ values are
captured. With increasing total mass and positive χ values (a) the amount of
recoverable SNR decreases. The greatest amount of recoverable SNR lies in the
total mass region M ∈ [40.0, 125] and χ ∈ [0.0, 0.85] (a). Focusing on this region,
a template bank with χ ∈ [0.0, 0.85] captures systems with positive aligned spin
(b).

3 Search Sensitivity Improvement with Spin-aligned
Templates

A study was performed characterizing the effectiveness of a nonspin bank
vs. a spin bank from within a search pipeline. The noise spectrum utilized
(figure 1) was aLigoHighPowerZeroDetuned with Gaussian distributed
background.

Including the effects of spin increases the number of templates in a fil-
ter bank. The increase in the number of templates from our non-spin bank
(∼ 1200) to our spin-bank (∼ 6000) was a factor of∼ 5. More templates in-
creases the number of false alarm triggers when filtering signal plus noise.
The number of false alarm triggers is proportional to the FAR by,
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Nbg ' Ntemplatese−ρ2
.

By including the effects of spin in our filter bank, the number of false alarm
triggers increased by a factor of∼ 3 (figure 3). Therefore, it is expected that
gains in SNR will be offset by losses due to an increased FAR.

Figure 3: The number of templates in our spin bank increased by a factor of ∼ 5
from our non-spin bank. More templates translates into an increase in the number
of false alarm triggers. Our results show that for a spin-bank the increase in false
alarm triggers is ∼ 3.

Figure 4 shows our results for the mean sensitive distance as a func-
tion of the FAR. For χ ∈ [0.0, 0.2] we see very little variation between
the performance of a non-spin bank compared to a spin bank through-
out a mass range of M ∈ [60, 100.0]M� (figures 4(a) and 4(b)). This in-
dicates an apparently coincidental offset of SNR gains to losses due to an
increased FAR. For χ ∈ [0.2, 0.5] and mass range M ∈ [60.0, 80.0]M� we
see a difference between the performance of a non-spin bank and a spin
bank with an increase in mean sensitive distance by ∼ 7% (figure 4(c)).
For χ ∈ [0.5, 0.85] the increase in mean sensitive distance is ∼ 40% for
M ∈ [60.0, 80.0]M� at low FAR (figures 4d,e,f).
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(a) χ ∈ [0.0, 0.2]; M ∈ [60.0, 80.0]M� (b) χ ∈ [0.0, 0.2]; M ∈ [80.0, 100.0]M�

(c) χ ∈ [0.2, 0.5]; M ∈ [60.0, 80.0]M� (d) χ ∈ [0.2, 0.5]; M ∈ [80.0, 100.0]M�

(e) χ ∈ [0.5, 0.85]; M ∈ [60.0, 80.0]M� (f) χ ∈ [0.5, 0.85]; M ∈ [80.0, 100.0]M�

Figure 4: Gains in SNR are perfectly offset by losses due to an increased FAR with
χ ∈ [0.0, 0.2] (a),(b) with no differentiation between the non-spin and spin banks.
For χ ∈ [0.2, 0.5] only slight gains in mean sensitive distance are achieved (∼ 7%)
for our lower mass systems with a spin bank (c), with ∼ 5% achieved for the
higher mass (d). Highest gains are with χ ∈ [0.5, 0.85] (e),(f). The highest mass
systems achieve a gain of ∼ 25% at low FAR (f). The lower mass systems achieve
a gain of (∼ 40%) at low FAR (e).
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(a) M ∈ [60.0, 80.0]M� (b) M ∈ [80.0, 100.0]M�

Figure 5: The ratio of the sensitive volumes of the template bank including the
effects of spin to the template bank without spin indicate nearly identical sensi-
tivities for low values of χ.

As discussed in section 2.3, the MFF is a measure of recoverable SNR.
SNR scales inversely with the distance to a signal’s source [8] and the de-
tection rate scales as the cube of the sensitive distance [8]. We can therefore
define the fractional increase in detection rate resulting from the inclusion
of spin in our template bank by

Vspin

Vnonspin
=

(
FFspin

FFnonspin

)3

,

where FFspin and FFnonspin are the fitting factors for the spinning and non-
spinning template banks with target waveforms [8].

Our results (figure 5) show that for low χ values the sensitivities achieved
are nearly identical as expected. For higher values of χ, and especially for
the lower mass range, the template bank including aligned spin has sig-
nificantly higher volume sensitivity for a fixed FAR.

Two methods of background rejection were employed for this study.
First, H1 and L1 shared the same template filter bank. For a trigger in H1
and a trigger in L1 to be considered coincident, they must ring up the exact
same template in the bank.
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Second, an auto-correlation signal consistency test denoted as χ2 (not
to be confused with the effective spin parameter χ) measured how con-
sistent our data was with Gaussian distributed noise plus signal. Figure 6
shows results for SNR (ρ) and χ2 values for both the non-spin bank and the
spin bank. High χ2 values for injections indicate a loss in discrimination
between noise and signal. The non-spin bank (figure 5a) results in much
higher χ2 values than the spin bank (figure 5b) by more than a factor of 10
at SNR ∼ 100 and a factor of ∼ 3 at SNR ∼ 10.

(a) (b)

Figure 6: On the following plots, our data points are instances of injection and
background detector triggers. Red represents software injections, while data in
black represents our background. Higher χ2 values indicate poor discrimination
between noise and signal. The non-spin bank (a) indicates poor discrimination
between noise and signal as compared to our spin bank (b) by a factor of ∼ 3 to a
factor of ∼ 10 at SNRs ∼ 10 and ∼ 100 respectively.

4 Parameter Recovery

To leading order, the phase and amplitude (see appendix IMRPhenomB)
of the GW depend on the chirp mass (Mchirp). Where

Mchirp = Mη
3
5 ,

10



and M = m1 + m2 is the total mass and η = m1m2
M2 . SNR scales with the chirp

mass as

ρ ∝
M 5

6

d
,

where d is the distance to the binary [9].
Our results (figure 7) show fractionalMchirp recovery to be systemati-

cally biased to lower values with increasing values of χ (figure 7a) for our
non-spin bank. Higher mass systems with high values for χ may match
with lower mass templates in the non-spin bank with the result being a
less accurate parameter recovery. While our spin bank (figure 7b) has very
accurate and unbiased recovery covering all χ values.

(a) (b)

Figure 7: There is a significant bias inMchirp recovery with increasing values of
χ for a template bank that does not include the effects of spin (a). Including the
effects of spin allows for greater accuracy over the entire range of χ values (b).

5 Future Work

5.1 IMRPhenomB Waveform Limitations

IMRPhenomB waveforms are constrained by f M > 400 where f is the
low frequency cutoff in Hz and M is the total mass of the binary in solar
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masses [7]. This limits the lower mass range of templates available. In
order to cover a lower mass search the low frequency cutoff would need
to be increased thereby disallowing the utilization of the full sensitive fre-
quency band of the advanced detectors. Boundary effects can be seen at
the edges of the parameter space in which IMRPhenomB waveforms are
reliable for lower mass highly spinning systems (figures 8c, 9).

The next generation of waveforms, IMRPhenomC, represents a step
forward in theoretical waveform modeling that can cover the entire mass
range without this constraint [7].

(a) M ∈ [40.0, 60.0]M� (b) M ∈ [40.0, 60.0]M� (c) M ∈ [40.0, 60.0]M�

Figure 8: For systems with a total mass range of M ∈ [40.0, 60.0]M� and low
values of χ the mean sensitive distance is nearly identical for a spinning and
non-spinning template banks (a). There is an improvement in mean sensitive
distance when including the effects of spin in the template bank for systems with
moderate spin (b). With a low frequency cutoff of 10 Hz, over the mass range
M ∈ [40.0, 60.0]M� there are boundary effects due to the f M > 400 constraint on
the IMRPhenomB waveform family (c).
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Figure 9: The boundary effects of the IMRPhenomB waveform family are evident
in the ratio of the sensitive volumes for systems with high values of χ.

6 Appendix

6.1 Signal to Noise Ratio

Given data stream s̃( f ) = ñ( f ) + h̃( f ), where ñ( f ) is detector noise and h̃( f )
is signal, the equation for the amplitude SNR of the (quadrature) matched
filter is [10]:

ρm(t) =
|zm(t)|

σm
.

Where a measure of the sensitivity of the instrument is given by σ2
m

σ2
m = 4

∫ ∞

0

|h̃1Mpc,m( f )|2

Sn( f )
d f ,

and z(t) is the complex matched filter output, with one-sided power spec-
tral density Sn( f ), given by
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z(t) = x(t) + iy(t) = 4
∫ ∞

0

s̃( f )h̃?template( f )

Sn( f )
e2πi f td f ,

with x(t) the matched filter output of the data stream

x(t) = 4Re
∫ ∞

0

s̃( f )h̃?template( f )

Sn( f )
e2πi f td f ,

and y(t) the matched filter output of the template h̃template, 2φ0 → 2φ0 −
π
2 ( f ) = h̃template( f )ei pi

2 = ih̃template( f ) [10].

6.2 IMRPhenomB Waveform Family

IMRPhenomB waveforms are a phenomenological fit to PN and NR wave-
forms. The PN waveforms are most accurate during the inspiral phase of
coalescence and become less accurate closer to merger. Breakdown of the
PN waveforms occurs near the innermost stable circular orbit (ISCO) at
the ultra-relativistic regime. There is a high computational cost for mod-
elling inspiral phase NR waveforms with the best computational efficiency
and accuracy for the late inspiral, merger, and ringdown phases. Informa-
tion on the phase or Ψ of our waveform is critical in the matched filtering
process. Considered here, the inspiral phase of our PN waveform in the
frequency domain (h̃( f )) [10] is:

h̃( f ) = −
(

5π

24

)1/2 (GM
c3

)(
GM

c2De f f

)(
GM

c3 π f
)−7/6

e−iΨ( f ;M,u)

=

(
1Mpc
De f f

)
A1Mpc(M, µ) f−7/6e−iΨ( f ;M,µ)
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where

A1Mpc(M, µ) = −
(

5
24π

)1/2 (GM�/c2

1Mpc

)(
πGM�

c3

)−1/6(M
M�

)−5/6

,

Ψ( f ; M, µ) = 2π f t0 − 2φ0 − π/4

+
3

128η
[v−5 +

(
3715
756

+
55
9

η

)
v−3 − 16πv−2

+
(

15294365
508032

+
27145
504

η +
3085
72

η2
)

v−1],

v =
(

GM
c3 π f

)1/3

,

where M is the chirp mass (defined in section 4), M� is the solar mass
∼ 2× 1030 kg, t0 is the time at the detector at which the coalescence occurs,
µ ≡ m1m2

M is the reduced mass [10], and v is the relative orbital velocity of
the binary.

Note that Ψ has been expanded to the second post-Newtonian order. It
has been noted in [10] that the truncation of the series expansion will lead
to errors in matching PN waveforms to the waveforms that nature gives
us.

For IMRPhenomB, the inspiral phase is matched (from above) to the
2PN accurate adiabatic inspiral waveforms in the test-mass (η → 0) limit
[7] with resulting phase modelled as

15



Ψ = 2π f t0 + ψ0 +
3

128η
v−5

{
1 +
(

3715
756
−920.9η + 492.1ηχ + 135ηχ2 + 6742η2

− 1053η2χ − 1.43104η3
)

v2 +
(

113
12

χs +
113
12

δχa − 16π + 1.702104η

− 9566ηχ − 2182ηχ2 − 1.214105η2 + 2.075104η2χ + 2.386105η3
)

v3

+
(

15293365
508032

−10χ2
a
81
16

+
810
8

χaχsδ +10χ2
s

81
16
−1.254105η +7.507104ηχ

+ 1.338104ηχ2 + 8.735105η2 − 1.657105η2χ − 1.694106η3
)

v4

+
(

6848
21

γE −
640
3

π2 +
11583231236531

4694215680
− 6848

21
ln 4v − 8.898105η

+ 6.31105ηχ + 5.068104ηχ2 + 5.981106η2 − 1.415106η2χ

− 1.128107η3
)

v6 +
(

77− 96675
254016

π + 8.696105η − 6.71105ηχ

− 3.008104ηχ2 − 5.838106η2 + 1.514106η2χ + 1.089107η3
)

v7
}

(1)
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