Summary of technical working group session

- One-sliders
 - Undergraduate students
 - Graduate students
 - Postdocs

Get the rest from the web

1

LIGO-G1301093

Students

On your left: 1. Christina Bogan 2. Joris van Heijningen 3. Laetitia Canete 4. Eric Quintero 5. Ryan DeRosa 6. Kate Dooley 7. Christian Gräf 8. Thomas Abbott 9. Jessica McIver On your right:

- 1. Johannes Eichholz
- 2. Tomoki Isogai
- 3. Alexander Khalaidovski
- 4. Sina Köhlenbeck
- 5. Zach Korth
- 6. Brett Shapiro
- 7. Dmitry Simakov
- 8. Mathieu Blom

A high power beam in high-order Laguerre-Gauss mode

<u>Christina Bogan</u>, Ludovico Carbone, Andreas Freise, Benno Willke

Science Objectives:

- demonstrate a high power LG33 mode for possible implementation in a future GWD
- analyse the technical noise of this ,new' laser source
 - including power, frequency and beam pointing noise

Results:

- verified phase plate conversion efficiency of 75%
- LG33 mode with 82,6W with a purity of more than 95%

Preliminary Results:

 power noise higher than free running laser --- reason unknown

Coating Thermal Noise Experiment THOR

Johannes Eichholz,

Michael Hartman, Guido Mueller, David Tanner, University of Florida

Science Objectives:

Measure coating thermal noise in aLIGO band as a function of beam size and temperature

Status Report

Dual reference system operational, test cavities under investigation

Noise performance curves

Results:

- **Reference system meets requirements**
- **CTN** in test cavities in preliminary measurements masked by other noise?

Outlook:

- Variation of beam sizes coming soon •
- 2nd, cryogenic setup under construction
- Expect cold data around 12/13

Monolithic Accelerometer with an interferometric readout

Joris van Heijningen

Jo van den Brand, Alessandro Bertolini, David Rabeling, Martin Doets, Nikhef Amsterdam

Science Objectives:

Measure the residual motion of MultiSAS, a suspension to suspend sensing optics for AdVirgo, requirement: ~ fm per \sqrt{Hz} @ 10 Hz

Results:

- Fringe visibility/ contrast at 95%
- Bandwidth expected to be 5 350Hz
- Not yet in vacuum
- Readout noise a factor 20 too high: 50 fm per \sqrt{Hz}
- Expect to be at 2.5 fm per √Hz, noise sources under investigation
- Can't wait to go into vacuum!

Filter Cavity Experiment

Tomoki Isogai,

Lisa Barsotti, Mattew Evans, Patrick Kwee, John Miller, Eric Oelker

LIGO MIT

16m filter

existina

vacuum

system, is

for aLIGO

long enough

cavity, which

can fit in the

Science Objectives:

Measure loss of mirrors as a function of beam size

Confocal Length (m)

11.8

18.5

2.5

3.0

3.5

Design a realistic filter cavity

4.3.0

4.0

3.0

2.5

2.0

1.5

1.0

0.5

(m/mdd) 3.5

.oss/Length

6.6

1.5

2.0

Beam Width (mm)

10

10

10

Frequency [Hz]

10

Tuesday, September 24, 13

Optical Follower Servo for the Photon Calibrator

Laetitia CANETE, university Claude Bernard Lyon 1

Aims:

 Allow deeper modulation depth by compensating for saturation in the AOM:

• Reduce noise inherent to the laser, the Relative Power Noise (RPN):

• Reduce harmonics noise due to the non linearity of the modulation process

Surface absorption in crystalline silicon @ 1550nm

Alexander Khalaidovski¹,

Jessica Steinlechner², Roman Schnabel²,

(1) ICRR Tokyo (2) AEI Hannover

Science Objective:

Measure optical absorption in crystalline silicon at 1550nm in view of a potential use in the Einstein Telescope

Results:

- A rather high round-trip absorption of 3200 ppm was measured, even at low intensities
- In view of our measurement procedure (differing from other groups), the discrepancy with literature data could be explained by surface absorption

Outlook:

- Set of measurements planned for direct and indirect analysis
- Joint measurements with Glasgow and Jena groups

E. Quintero - CalTech

Sept 2013 Crackle Measurement

LIGO

Crackle noise is **discrete**, **impulsive** events spanning a broad range of sizes in response to slowly changing external conditions.

The AEI Suspension Platform Interferometer

Sina Köhlenbeck,

Katrin Dahl and Conor Mow-Lowry for the AEI 10m Prototype team

Science Objectives:

- Measure the relative table motion between two seismically isolated optical benches
- Signals used for feedback control

Status report:

Installed and under commissioning

Results:

- Diagnostic interferometer noise level below the requirement of 100pm/√Hz @ 10mHz
- Installed the path length difference stabilization
- Longitudinal degree of freedom controlled

Outlook:

- Optimize the filters for control
- Investigate on angular degrees of freedom

LIGO Livingston Commissioning

- DRMI continuing with 10-20 W input
- 3f locking scheme demonstration
- Quad suspension noise
- HIFO X

OMC commissioning/characterization *Zach Korth et al., CIT-LLO*

- aLIGO OMC has been installed and is operating on the L1 interferometer
- Locked with required ~100 Hz bandwidth
- Length noise was measured
 - Looks good, save for some peaks near 1
 kHz (see right)
- Used to attain high-frequency PRMI sensitivity of 5 x 10⁻⁷ m/VHz
- Backscatter measured to be < 10⁻⁸

- Mode matching from IFO to dark port is not quite right
- We should not use our OMC PZTs (Noliac) to above 100 V.
- We have some excess intensity noise generated in the interferometer between the IMC and the dark port.

Squeezing at GEO600

Cryogenic LIGO III Suspensions

Brett Shapiro Stanford University

- Modeling of cryogenic suspensions for LIGO III (blue team in strawman T1200031)
- Stanford experiments studying test mass cooling technology

LIGO III quad conceptual design

To beat aLIGO performance with larger test masses, 3 options:

- Push the payload capacity of the seismic systems (ISIs)
 - hard, but moderate noise
- Reduce test mass weight

 easiest, but noisiest
- Install 4th stage of springs -hard, but quietest

The Glasgow Sagnac Speed Meter proof-of-principle experiment

<u>Christian Gräf</u>¹, Bryan Barr¹, Angus Bell¹, Alan Cumming¹, Stefan Danilishin^{2,} Neil Gordon¹, Giles Hammond¹, Sabina Huttner¹, Sean Leavey¹, Harald Lück³, John Macarthur¹, Roland Schilling³, Borja Sorazu¹, Ken Strain¹, and Stefan Hild¹

¹SUPA, Institute for Gravitational Research, University of Glasgow, UK.

²Institute of Physics, The University of Western Australia, Australia.

³Albert-Einstein-Institute Hannover, Germany.

- Setting up an ultra-low noise Sagnac interferometer experiment with high optical power and lowmass mirrors
- Design optimised to achieve a better sensitivity than an equivalent Michelson interferometer could achieve in the few 100Hz range

> Aim: Experimental verification of back-action noise reduction in a Sagnac Speed Meter interferometer

Dynamical tuning in signal recycled GW detectors

Dmitry Simakov,

Albert Einstein Institute, Hanover

Science Objectives:

- Following the instantaneous frequency of chirp-signal with detector tuning to increase sensitivity
- Developing the time-domain model for the non-stationary detector response on signal and noise

Results:

The analysis of the shot noise and GW-signals during DT

≻The shot noise remains white
≻During resonant tracking the slowly changing amplitudes evolve stationary
The calculated gain of signal-to-noise-ratios is
>~17 for the shot-noise limited detector
>~7 with thermal noise

Suspensions Drift Monitor

Problem: Suspension drift on day time-scales, causing alignment and lock loss.

Solution: A tool that will monitor drifting and provide a simple visual indication of when a suspension system has drifted too far.

Thresholds

Nominal condition \rightarrow Within 2 σ from mean Medium condition \rightarrow Beyond 2 σ , less than 3 σ Poor condition \rightarrow Beyond 3 σ

	LIDRIFT MONITOR	L1:FEC-30 TIME ST
a LIGO Optic Drift Monitor		
Readback	Readbar	ck
MC1 pitch M1 DA	DAMP ITMX pitch MO	D DAMH
roll M1 DA	DAMP roll MO	D DAMH
yaw MIDA	DAMP yaw MO	D DAMI
MC <u>2</u> pitch M1 D4	DAMP ITMy pitch MO	D DAMH
roll M1 D4	DAMP roll MO	D DAMH
yaw M1 D4	DAMP yaw MD	D DAMH
MC3 pitch M1 DA	DAMP ETMx pitch MO	D DAMH
roll M1 DA	DAMP roll MO	D DAMH
yaw M1 DA	DAMP yaw MO	D DAMH
PRM pitch M1 DA	DAMP ETMy pitch MO	D DAMA
roll M1 DA	DAMP roll MO	D DAMA
yaw M1 DA	DAMP yaw MO	D DAMA
SRM pitch M1 DA	DAMP BS pitch M1 D	A DAMP
roll M1 DA	DAMP roll M1 D	A DAMP
yaw M1 DA	DAMP yaw M1 D	A DAMP

AdV External Injection Bench Seismic Attenuation System (EIB-SAS)

<u>Mathieu Blom</u>, A. Bertolini, E. Hennes, A. Schimmel, H.J. Bulten, M.G. Beker, F. Mul, M. Doets, J.F.J. van den Brand. Nikhef Amsterdam

Science Objectives:

 Eliminate beam jitter introduced by external injection bench for Advanced Virgo

Thursday, September 26, 13

Update on investigations by the detector characterization working group on the aLIGO seismic isolation subsystem - Jess McIver for the detchar SEI team. DCC # G1300916

Seismic-IMC upconversion (investigation)

- Who: Alex Lombardi, Jess McIver, Marissa Walker, Josh Smith
- Overview: A collection of many examples of elevated ground motion and concurrent IMC signal at Livingston. [Link]
- **Results**: Showed ground motion to IMC upconversion *at significantly smaller* ground motion amplitudes than typical for trains. [LLO alog 7725]
- **Future plans**: To test whether the upconverted noise seen in the IMC affects the DRMI or PRMI signal, and if so, what is the threshold of elevated seismic noise that produces this effect.
- Detchar SEI team: Jess McIver, Michael Coughlin, Alex Lombardi, Sydney Chamberlin, Laura Nuttall, Scotty Dossa, Chase Kernan, Ryan Quitzow-James, Kalina Nedkova.
- Support: Duncan Macleod, Chris Pankow, Ryan Fisher
- SUS team: Thomas Abbott, Marissa Walker, TJ Massinger, Sarah Zuraw

Fs = 16,384 Hz, sec/fft = 10.00, overlap = 0.10, fft size = 163,840, nfft = 199, bw = 0.10, in samples = 29,491 K, low = 0.20 The second sec