Status Update of a LIGO Lock Acquisition Simulation

Kiwamu Izumi (LIGO Hanford Observatory)

LIGO-G1301126-v1
Simulation meeting Oct/04/2013

Previous Summary

see LIGO-G1300935-v2

■ Transition from green to infrared sensor was achieved in CARM control.

CARM can be locked by REFL9I directly a new concept => "Self locking"

DRMI locked by 3fs

SRCL is the only difficult DOF in DRMI

Today's Summary

- RFPD dark noise are newly added
- REFL is attenuated to 10 mW on each diode
- ALS acoustic bump (100Hz-1kHz) is newly added
- HSTSs (i.e. triple sus) are newly added
- DAC limiters are newly added

■ CARM hand-off (i.e. self-locking) works fine

Current Sim. Settings

Same as before.See Appendices for detail

- A few cheating still remain
 - BS suspension is not FMBS but is HSTS
 - DARM is magically locked with zero noise

HSTS model

e2e GUI view of HSTS

HSTS model

e2e GUI view of HSTS

HSTS compound actuator

TFs are approximated to be simple forms

X-overs are similar to MC2 control.

HSTS longitudinal actuators as seen from LSC side

More realistic ALS noise

Noise around 100Hz - 1kHz is newly added

Overview

It starts from a CARM offset of 10 Hz

Overview

It starts from a CARM offset of 10 Hz

DRMI lock: OK

- Large excursion in SRCL (~9 nm max.)
- It didn't drop SRCL so far among 5 or 6 trials

Close look at SRCL

Very noisy due to the PD dark noise

ALS COMM trigger

- A simple trigger was implemented to disengage ALS to stop polluting CARM
- This doesn't need to be fast.
 Probably 10 msec delay is tolerable.

(CARM storage time ~ 300 msec)

```
* * * what it does * * *

if (TRX_DC > 30 mW)

decrease ALS gain over 1 sec;

else

keep working;
```

CARM in time domain

Conclusions and Plans

- SRCL excursion looks big, but still OK
- CARM hand-off works OK under the realistic noise condition

- ALS DARM noise will be included
 - This requires a noise modeling to estimate DARM noise
 - This may require ALS CARM to have higher UGF => noisier CARM.

Appendix

Important Quantities

Single arm full linewidth~ 80 Hz(or ~ 1 nm)

Power recycled CARM linewidth~ 1 Hz (or ~ 14 pm)

ALS CARM loop provides6 Hz RMS (at best so far)

DRMI lock

- 3f technique works OK so far.
- 3f can hold DRMI until the end
 - PRCL -> REFL27_I
 UGF = 40 Hz
 - MICH -> REFL135_QUHF = 10-ish Hz

■ SRCL -> REFL135_I
UHF = 20-ish Hz

Offset reduction

```
CARM offset =
 \blacksquare -10 Hz when t < 3 sec.
 \blacksquare -10 Hz + 5 Hz/sec x (t - 3) when t > 3 sec
            when t > 5 sec
                                  10 Hz
   PSL freq [Hz]
                                         0 Hz
```

5

Time [sec]

Current Sim. Settings

DRMI locked by 3fs. Seismic noise present.

- DARM magically stays locked with zero noise
- CARM locked by ALS feeding signals back to PSL. Sensor noise dominant (6 Hz RMS).

Sim. Settings (cntn'd)

- no radiation pressure
- no IMC or FSS
- 1 W incident on PRM
- \blacksquare mod. depth = 0.1 for both 9 and 45 MHz
- lower reflectivity in SRM: T = 0.35

RFPD dark noise

- 9MHz RFPDs (T1300387)
 - shot noise equiv current = 1.35 [mA]
 - Responsivity = 0.8 [A/W]
- 45 MHz RFPDs (T1300387)
 - shot noise equiv current = 1.98 mA
 - Responsivity = 0.8 [A/W]
- f3 RFPDs a.k.a. BBPDs (D1002969)
 - shot noise equiv current = 4 mA
 - Responsivity = 0.32 [A/W]