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1. Introduction

Gravitational wave (GW) observations provide new information about their sources, aiding in the
development a more complete picture of astronomical phenomena. Analogous to the production of
electromagnetic (EM) waves by accelerated charges, GWs are generated by accelerated mass dis-
tributions, such as supernova explosions or mergers of neutron star and black hole binary systems.
Such events induce the propagation of GWs through our universe at the speed of light, resulting
in the alternating stretching and compressing of space-time transverse to the direciton of propi-
gation [1]. Current GW detectors, such as those used by aLIGO and Virgo, are Michelson-type
laser interferometers that measure the effects of GW tidal forces through distance changes between
mirrors suspended in vacuum within the detector [3]. Although indirect evidence of GW emission
has been observed through its effects on the orbital evolution of pulsars, a GW has not yet been
directly detected [4]. With recent efforts to increase detector sensitivity, the aLIGO and Virgo
ground-based detectors are predicted to observe a GW signal within the next decade [5].

Unlike electromagnetic (EM) waves, which are emitted by individual particles, GWs are emit-
ted by bulk motions of their source, and therefore, carry a completely different set of information
about their origin [4]. For example, GW observations measure the masses and spins of their source’s
components with great accuracy. In addition, GWs can be used to approximate their source’s sky
location and distance [6] [4]. However, there are some properties, such as a source’s redshift, that
GWs cannot measure, but that can be determined from EM observation [5]. Considering the
complementary information provided by GW and EM observation, the joint observation of both
emissions would provide further insight into the nature of their source, such as its Hubble constant.
One of the most promising sources of coincident GW and EM emissions in the frequency range of
current detectors is the merger between two neutron stars or a neutron star and a black hole, know
as a compact binary coalescence (CBC) event [5]. During the inspiral of a CBC event, the neutron
star may be torn apart, resulting in EM emission across the spectrum that can last anywhere from
seconds to months after the event [3]. Finding the EM counterpart of a GW would not only help to
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validate a GW detection, but would also provide a more accurate measurement of the luminosity
distance to the source and refine the source’s sky localization [7].

In order to obtain optimal EM follow-up of GW candidates, GW signals can be used to localize
their source’s sky position, enabling the ideal orientation of telescopes to detect the corresponding
EM counterpart [9]. GW detectors are designed to receive signals from a large fraction of the
sky, and, consequentially, a single detector provides little information about the sky location of a
detection’s source. However, using a network of detectors, one can triangulate a CBC event from
the observed time delays in the GW signals at several detector sites. Using timing information
alone, it is only possible to determine the sky location of a detection’s source as projected onto the
baseline of the detectors. Therefore, localization can only restrict a source’s sky position up to the
reflection degeneracy with respect to the plane of the detectors. For networks consisting of more
than two detectors, such as the aLIGO-Virgo detector network, this mirror image degeneracy can
usually be mitigated by requiring consistency between the observed amplitudes of signals from each
detector [7].

The observed time delays and amplitude of a GW signal can then be used to determine a
probability distribution of a source’s most likely sky location. In general, the posterior distribution
for the set of parameters µ, given the dataset s, can be found using Bayes’ theorem [7],

p(µ|s) =
p(µ)p(s|µ)

p(s)
=

p(µ)p(s|µ)∫
dµp(µ)p(s|µ)

. (1)

In this equation, p(µ) is the prior probability distribution of the parameters µ, p(s|µ) is the
likelihood that the dataset s is consistent with the parameters µ, and p(s) is the marginal likelihood
given by the distribution of the observed data s marginalized over the parameters µ [8]. The set
of parameters µ defining a GW signal includes the following parameters,

µ = (θ, φ, r, tc, φc, ι,m1,m2) , (2)

where θ is the right ascension, φ is the declination, r is the distance to the source, tc is the
coalescence time, φc is the orbital phase at coalescence, ι is the inclination angle of the orbital,
and m1 and m2 are the masses of the binary components [3]. However, in order to determine
the probability distribution of a source’s sky location, it is only necessary to consider a subset
of these parameters, particularly the right ascension and declination. This is made possible by
either fixing or marginalizing over all other parameters except for those related to the sky position
of the source [7]. The likelihood p(s|µ) can be determined by the likelihood ratio of a signal h
parametrized by µ being present in the dataset s, relative to the null hypothesis. This is given
by [7]

Λ(µ) =
p(s|h(µ))

p(s|0)
=
e−〈s−h(µ)|s−h(µ)〉/2

e−〈s|s〉/2
, (3)

where the inner product is defined in terms of the noise power spectrum of the detector S(f) by
the integral [7]

〈a|b〉 = 4Re

∫ ∞
0

df
ā(f)b̄∗(f)

S(f)
. (4)

Using this calculation of the likelihood p(s|µ) and assuming a uniform prior distribution p(µ), one
can obtain a probability distribution of a source’s sky location from the amplitude and observed
time delays of its GW signal. This probability distribution, referred to as a GW skymap, can then
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be used to guide telescopes, optimizing the probability of EM detection. An example of a skymap
is shown in Fig. 1 [?].

Figure 1: GW skymap for the G71031 trigger on February 16, 2013. More probable source locations are
indicated in red, while less probable regions are in blue. Image from [10].

The primary source of error in using a network of detectors to create a GW skymap is due to
the uncertainty in the timing accuracy of the GW signal. This is approximated to be

σt ≈
1

2πσfρ
, (5)

where ρ is the signal-to-noise ratio (SNR) and σf is the effective bandwidth of the signal [7]. Taking
into consideration this uncertainty, for an ideal source with optimal orientation the LIGO-Virgo
detector network can restrict the source’s sky location to an area of approximately 20 square de-
grees. Typical localization is approximately twice this area [7] [11]. This GW error region is likely
to contain over a hundred galaxies out to 100 Mpc, making the imaging of all possible galaxies in
this region impractical [11]. However, by introducing additional GW parameters and constructing
a more accurate prior, it may be possible to determine a more precise posterior probability distri-
bution using Bayes’ theorem in Eq. 1.

For this project, we will examine the incorporation of the source’s distance along with its sky
location as parameters in Bayes’ theorem to determine a 3D skymap of the most probable source
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locations. In addition, we will analyze various methods of constructing a prior using information
from a galaxy catalog to further localize the source based on the known locations of its most likely
host galaxies. Taking into consideration this additional parameter and prior, we will compare the
efficiency and accuracy of the source localization performance of the resultant posterior probability
distribution as compared to that obtained using a 2D skymap and uniform prior distribution.

2. Objectives

Combing the probabilistic information from a 3D skymap with prior information from a galaxy cat-
alog, we hope to more precisely localize a CBC source in low latency, enabling optimal EM followup
of GW candidates. Motivation for this project stems from previous studies, which have demon-
strated how the application of a galaxy catalog and the incorporation of a source’s distance can be
used to enhance source localization. For example, Nuttall and Sutton [11] have demonstrated the
potential advantages of utilizing a galaxy catalog. In their study, they developed a ranking statistic
for comparing galaxies within the GW error box of a signal’s 2D skymap to determine the most
probable host galaxy within this region. Their statistic compares the luminosities and distances
of potential galaxies, favoring nearby, larger galaxies as more probable sources of detection. This
statistic is given by [11]

R = e−
χ2

2
L

dα
, (6)

where L is the blue-light luminosity of the potential host galaxy, d is the distance to the galaxy, α
is a constant, and χ2 is the chi-squared match between the measured and predicted arrival time of
the GW signal at each detector. Using this ranking statistic, it is possible to correctly identify the
true host galaxy of a CBC event approximately 20-50% of the time when imaging a single galaxy,
depending on the masses of the binary members. This accuracy can be increased up to 30-60% by
collectively imaging groups of galaxies using a larger field-of-view [11]. These probability estimates
further improve as the number of images taken increases, as depicted in Fig. 2.

Figure 2: Probability of imaging a true host galaxy for various types of binary systems versus the number
of images taken. The first graph (a) reflects the success rate of Nuttall and Sutton’s statistic identifying the
true host galaxy of a source when images are taken using a narrow field of view, whereas, the second graph
(b) corresponds to a wide field of view. The shaded regions indicate the uncertainty associated with this
probability estimate. Image from [11].
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Our proposed method of incorporating distance and using a galaxy catalog provides a more
effective form of source localization than the ranking statistic used by Nuttall and Sutton in two
important ways. First, we aim to take into consideration the actual distance to the source rather
than just favoring closer galaxies. As described by Schutz [4], GW signals not only carry information
about their source’s sky position, but also about their distance. Using gravitational wave detectors,
it is therefore possible to measure the effective distance to a source given by [?]

Deff = D

[
F 2

+

(
1 + cos2ι

2

)2

+ F 2
x cos

2ι

]−1/2

, (7)

where D is the actual distance to the source, ι describes the inclination of the binary’s orbital plane
to our line-of-sight, and F+ and Fx are the antenna response functions of the detector. By including
the effective distance to a source as a parameter, we predict that we’ll obtain more precise source
localization than that achieved using Nuttall and Sutton’s ranking statistic. Secondly, we intend to
utilize information from a galaxy catalog differently than the way in which it was used by Nuttall
and Sutton. Their study uses the catalog to determine ad hoc rankings of potential host galaxies
identified by the 2D skymap of a GW signal. On the other hand, we intend to use the catalog to
construct a more accurate prior distribution. With these differences, we hope to develop a posterior
probability distribution using Bayes’ theorem with more effective source localization.

3. Error Estimation

Thus far, we have primarily focused on determining the accuracy of the parameter estimation
obtained using Bayes’ theorem, given by Eq. 1. To analyze this accuracy, we calculated the lower
bound on the variance from the parameter estimations, known as the Cramér-Rao bound. This
lower bound can be determined by the inverse of the Fisher information matrix. The elements of
the Fisher matrix are given by

Ijk = E

[
−∂2 logL
∂µjµk

∣∣∣∣µ] , (8)

where E[y] represents the expectation value of y and L is the probability of observation x given
the parameters µ, which is known as the likelihood.

The Fisher information matrix provides a simple way of determing a lower limit on the extent to
which we can restrict various parameters of a GW signal. The Fisher matrix is convenient because
assuming that the uncertainty in the parameters follows a Gaussian distribution, the elements of
the Fisher matrix depends only on the liklihood L, which is given by

log(L) = −1

2

∫ ∞
0

|x(ω)− h(ω,µ)|2

S(ω)
dω , (9)

where S(ω) is the noise power spectrum of the detector and h(ω,µ) is the GW signal. By differen-
tiating the logrithm of the liklihood given in Eq. 9 with respect to two parameters µj and µk, we
can reduce our expression for the elements of the Fisher information matrix in Eq. 8, resulting in
the following equation

Ijk = −
∫ ∞

0

Re
[(

∂h
∂µj

)∗ (
∂h
∂µk

)]
S(ω)

dω . (10)
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Modeling the GW signal h(ω) as a Newtonian chirp, h(ω) is defined by the linear combination of
the two polarization components h+(ω) and h×(ω)

h(ω) = F+h+(ω) + F×h×(ω) , (11)

where F+ and F× are the detector’s antenna-pattern. To simplify h(ω), we assume that the GW’s
source is in line perpendicular to the arms of the detector such that the inclination of the orbital
to the line of sight is zero degrees. In this case, h(ω) reduces to

h(ω) = Aei(γ−ωτ)h0(ω) , (12)

where A, γ, and τ are related to the inverse distance to the source, the phase of the signal, and the
time of coalesence respectively. In Eq. 12, h0(ω) is given by

h0(ω) =M5/6

(
Gω

2c3

)−7/6

e−iΨ(ω) , (13)

where M is the chirp mass, which is defined as

M = Mtotη
3/5 = Mtot

(
m1m2

M2
tot

)3/5

, (14)

where m1 and m2 are the masses of the binary components of the inspiral and η is the reduced
mass over the total mass of these components. In addition, the term Ψ(ω), also introduced in Eq.
13, can be approximated as

Ψ(ω) ≈ −π
4

+
3

128

(
GMω

2c3

)−5/3

. (15)

Combining this expression for Ψ(ω) with the expression for h0(ω) in Eq. 13 and plugging this into
the equation for the GW signal h(ω) given in Eq. 12, we derive an expression for h(ω) dependent
on the parameters A, γ, τ , andM. Using the expression for Ijk given in Eq. 10, we then solved for
the elements of the Fisher informaiton matrix with respect to each of these parameters, as shown
below.



ρ γ τ M
ρ 1 0 0 5ρ

6M
γ 0 ρ2 −ρ2ω 5ρ2

128M
(
GM
2c3

)−5/3
ω−5/3

τ 0 −ρ2ω ρ2ω2 − 5ρ2

128M
(
GM
2c3

)−5/3
ω−2/3

M 5ρ
6M

5ρ2

128M
(
GM
2c3

)−5/3
ω−5/3 − 5ρ2

128M
(
GM
2c3

)−5/3
ω−2/3

(
5ρ

2M

)2 [
1
9 + 1

4096

(
GM
2c3

)−10/3
ω−10/3

]


(16)

As shown in Eq. 16, for simplification we introduced the unitless variable ρ to incompass the
parameter A, where ρ is defined as

ρ = Aσ (17)

and σ2 is given by the integral

σ2 =

∫ ∞
0

|h0(ω)|2

S(ω)
dω . (18)
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We approximated σ2 using a Riemann sum given values for S(ω) at discrete frequencies ranging
from 9-8,190 Hz [13]. For every possible pairing of the four parametersM, ρ, γ, and τ , we created
2x2 matrices corresponding to the elements of the Fisher matrix related to the two parameters.
By inverting this matrix, we determined the convarience matrix of the following parameter pairs:
M and ρ, M and γ, M and τ , and γ and τ . We excluded the pairings of ρ and γ and ρ and τ
because the partial derivative of h(ω) with respect to ρ is real whereas the partial derivatives with
respect to γ and τ are imaginary, resulting in zeros within their respective 2x2 matrices. For each
of the four aforementioned parameter pairs with nonzero elements, we created error ellipses. The
semi-major and minor axises of each ellipse were defined by the square root of the eigenvalues of
each coveriance matrix corresponding to a parameter pair. In addition, the tilt of the ellipse was
determined by the angle between the eigen vectors of each coveriance matrix.

4. Results and Discussion

For each parameter pair, we analyzed error ellipses for a 1.4-1.4, 1.4-10, and 10-10 M� inspiral,
which correspond to a NS-NS, NS-BH, and BH-BH merger respectively. In addition, for each of
these types of inspirals, we considered when ρ=5, 10, and 15. The resulting eighteen error ellipses
for the parameter pairs M and ρ and γ and τ are shown in Figs. 3-5.

(a) Error ellipse of M and ρ for 1.4-1.4 M� in-
spiral where ρ=5.

(b) Error ellipse of γ and τ for 1.4-1.4 M� inspi-
ral where ρ=5.

(c) Error ellipse of M and ρ for 1.4-1.4 M� in-
spiral where ρ=10.

(d) Error ellipse of γ and τ for 1.4-1.4 M� inspi-
ral where ρ=10.
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(e) Error ellipse of M and ρ for 1.4-1.4 M� in-
spiral where ρ=15.

(f) Error ellipse of γ and τ for 1.4-1.4 M� inspi-
ral where ρ=15.

Figure 3: Error ellipses for a NS-NS M� inspiral where ρ=5, 10, and 15. Ellipses are shown for parameter
pairs M and ρ (left column) and γ and τ (right column). σM, σρ, σγ , and στ represent the deviation from
the estimated value of their respective parameter, which is centered at zero.

(a) Error ellipse of M and ρ for 1.4-10 M� in-
spiral where ρ=5.

(b) Error ellipse of γ and τ for 1.4-10M� inspiral
where ρ=5.

(c) Error ellipse of M and ρ for 1.4-10 M� in-
spiral where ρ=10.

(d) Error ellipse of γ and τ for 1.4-10M� inspiral
where ρ=10.
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(e) Error ellipse of M and ρ for 1.4-10 M� in-
spiral where ρ=15.

(f) Error ellipse of γ and τ for 1.4-10 M� inspiral
where ρ=15.

Figure 4: Error ellipses for a NS-BH M� inspiral where ρ=5, 10, and 15. Ellipses are shown for parameter
pairs M and ρ (left column) and γ and τ (right column). σM, σρ, σγ , and στ represent the deviation from
the estimated value of their respective parameter, which is centered at zero.

(a) Error ellipse ofM and ρ for 10-10 M� inspi-
ral where ρ=5.

(b) Error ellipse of γ and τ for 10-10 M� inspiral
where ρ=5.

(c) Error ellipse ofM and ρ for 10-10 M� inspi-
ral where ρ=10.

(d) Error ellipse of γ and τ for 10-10 M� inspiral
where ρ=10.
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(e) Error ellipse ofM and ρ for 10-10 M� inspi-
ral where ρ=15.

(f) Error ellipse of γ and τ for 10-10 M� inspiral
where ρ=15.

Figure 5: Error ellipses for a BH-BH M� inspiral where ρ=5, 10, and 15. Ellipses are shown for parameter
pairs M and ρ (left column) and γ and τ (right column). σM, σρ, σγ , and στ represent the deviation from
the estimated value of their respective parameter, which is centered at zero.

From Figs. 3-5, we can see that the angle by which the ellipse is tilted increases as ρ increses
and decreases as M increases. In addition, as ρ increases the ellipses become more stretched out,
indicating more accurate parameter estimations. Considering that ρ corresponds to one over the
distance to the CBC event, the observed inverse relationship between the area of an ellipse and
ρ suggests that the closer the source of a CBC event, the more accurately we can restrict its
parameters. To better quantify the accuracy of the parameter estimation of ρ and its dependence
on chirp mass, Fig. 6 shows σρ as a function of M.

Figure 6: Uncertainty in ρ as a function of chirp mass. Chirp masses characteristic of a NS-NS, NS-BH,
and BH-BH inspiral are denoted by dashed lines.

10



From Fig. 6, we can see that uncertainty in ρ increases exponentially as chirp mass increases.
Hence, there is slightly more uncertainty in ρ for a NS-BH inspiral than a NS-NS inspiral. However,
we can estimate the SNR for a NS-BH inspiral with far more accuracy than a BH-BH inspiral.

5. Future Work

The next step of this project will be to use the Fisher information matrix to evaluate the accuracy
of the parameter estimation obtained using Bayes’ theorem in order to create a GW skymap of the
most likely source locations of a GW signal. We’ll then analyze various ways of utilizing a galaxy
catalog to construct a prior and compare the source localization performance of the resulting
posterior probability distributions.
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