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Stochastic samplers are often used to perform Bayesian inference on data sets. It is often assumed that
once the samples are produced then this is the end of the data processing and the treatment of the samples
will not greatly affect the results. In this paper we re-emphasise some of the biases that can enter the
extracted information, due to the processing of these samples. We suggest a straightforward method to
solve these issues called the 2-stage kD-tree. This method has already been used as a necessary part of
testing algorithms that are used to extract gravitational wave signals from ground-based interferometer

data.

INTRODUCTION

There are many data analysis problems that are now be-
ing tackled by stochastic Bayesian based algorithms. These
problems are often characterised by a need to recreate a
complex probability density function (PDF) that describes
the most probable values of a models input parameters.
One set of these algorithms produce a collection of co-
ordinates in the model parameter space, whose distribu-
tion maps the PDF. These ‘samples’ are either drawn di-
rectly from the PDF as in the case of Markov-chain Monte
Carlo with a Metropolis-Hastings acceptance condition, or
a re-weighting of previously collected samples, e.g. nested
sampling.

Once these runs have completed we expect the samples
to represent the sought after PDF and we have the task of
reconstructing the PDF from this finite number of samples.
Our ability to recreate the true PDF from the set of points
will depend on the number of samples output. There is a
large amount of literature on various ways to do this, be
this histograms, kernel density estimators or kD-trees, all
of which have their issues when implemented [1] . The
preferred method will depend on the use of the PDF and
the number of samples output by the code.

The problem we have been considering is that of data
from gravitational wave detectors and using bayesian meth-
ods to estimate parameters from two inspiralling black
holes. For this paper the important properties of the PDF
of the signal model parameter values are that it is a multi-
modal, high (9-15) dimensional function. We are often in-
terested in just a couple of these dimensions, for example,
the location of the source in the sky and we can use this to
our advantage.

As part of testing our sampling algorithms we noted that
the recovered PDFs could be biased by the handling of
their output. For parameter estimation there are a couple
of questions we need to answer with our PDFs. What are
the regions in parameter space that we are x% sure that the
source can be found. While this in itself is a simple ques-
tion, we usually require the minimum region where this

is true. Coupling this requirement with the fact that our
PDF is represented by a finite number of samples can very
quickly introduce bias.

This can be important for a few different reasons. Firstly,
we want to be able to publish accurate scientific results that
we can trust. Secondly, we would like to be able to have
ways in which we can test our sampling codes on large
numbers of simulations and this depends on having reliable
post-processing (see [2]). We may also need to use the
output of our code as the input to new runs, with a new
data set, propagating any errors.

These are all issues that have been found before, and
even solved, but are regularly ignored. We present an
overview of the problem, some examples of how easily this
bias can enter an analysis, as well as a new and particularly
straightforward way of solving it.

OPTIMALITY VS CONSISTENCY

Given data output from a suitable sampler we must recre-
ate the PDF that the samples are drawn from; we call this
post-processing. We describe the PDF via credible levels
(CL): the integrated probability over a given region of the
parameter space. In particular we consider the smallest re-
gion, or minimum credible region (CR,;,), for a given CL;
the smallest region in the parameter space for which there
is probability of CL that the true parameter values are con-
tained in this region. More formally, for a given CL, any
credible region (CR) must satisfy

CL:/ p(Q|d)dS? . )
CR

We can then find the smallest region such that this still
holds, which we call CR,,;;,,. By considering the full range
of probabilities we can map out the PDF with a set of con-
tours that bound each CR,,;,. When producing CR,,;, we
strive for 2 qualities, consistency and optimality. The for-
mer is a necessary condition and is the property that pro-
duced CR,,;, satisfy Eqn. 1. Consistency is checked over



multiple runs by confirming that the desired fraction of in-
jections falls within the credible region corresponding to
the stated credible level; see [2] and below for a discussion
of p-p plots. Optimality relates to our ability to minimise
this region, which is important for increasing the useful-
ness of our results. When setting up algorithms we must be
cautious that our optimising methods do not break consis-
tency; consistency is necessary, while optimality is desired.
This is particularly true if we are testing the sampling algo-
rithm as we must have confidence that the post-processing
is never at fault if the resultant PDFs are not consistent.

KD-TREES AND THEIR BIAS

The simplest approach to recovering a PDF from a set of
samples is to impose a grid on the parameter space as a set
of bins. We count the number of samples that fall in each
bin, the result of which will be proportional to the probabil-
ity density. The CR of a given CL is the region that covers
a set of bins that contain a CL fraction of the samples. To
optimise the size of this region we apply a greedy algo-
rithm that starts from the bin with the most samples and,
keeping a running total of samples, counts from the most
populated (highest density) bin towards the least. Once we
have counted the necessary fraction of samples we have
found the CR,,;,,.

This simple method has a few important drawbacks. The
most obvious being that for any non-trivial PDF there is no
single resolution that behaves well over the whole space.
Bins that are too large will hide any detail, while small
bins will often be empty and so are unorderable. The for-
mer significantly hampers our ability to optimize, while the
latter leads to inconsistency. Pushing these 2 scenarios to
their limit, the lowest resolution (1 bin) will only return
the 100% CR,,;,, which covers the entire parameter space,
while as the number of bins goes to infinity the volume of
all CR,,,;, tends to 0.

Instead we turn to a kD-tree method of binning [3],
shown pictorially in figure . This method is similar to
the gridded binning idea except that bin sizes are adaptive;
chosen so that they all contain a similar number of samples.
This means boxes will be large in regions where the sam-
ples are sparse but small where the samples are densely
packed. This is achieved by taking the parameter space,
choosing a particular parameter, ordering the samples by
this parameter and dividing them into 2 bins using the me-
dian. The next parameter is then chosen and the samples
from each bin are again divided according to the samples
median of the new parameter. We continue this process,
looping through all the parameters, until there are a re-
quired number of samples left in each bin. To find credible
regions the same greedy algorithm that was applied to the
gridded space is used, with the ranking of bins by sample
density.

Using kD-trees can greatly improve on our ability to op-
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FIG. 1. To construct a kD-tree, the median of the samples is
found and used to divide the parameter space. Repeating this
process in alternating parameters, the parameter space is further
subdivided. Confidence levels are then assigned ’greedily’ by
counting samples in order of bin density.
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FIG. 2. In the case of samples taken from a uniform distribution
there will be some statistical fluctuation on where the median is
located. A bias is introduced that results in the recovered 50%
CR,,,in, covering less than half of the parameter space.

timize, while never having empty, unorderable, boxes. We
do not claim that kD-trees are the perfect method for opti-
mising the CR,;;,, but they are a straightforward method of
doing so and produce resultant PDFs in an easy to use for-
mat. While we have addressed the issue of optimality, the
necessary property of consistency has not been checked.
We now show that the use of a greedy algorithm to assign
credible levels introduces a bias that breaks the requirement
of consistency, and so will affect both the kd-trees and the
gridded binning. Consider figure 2; if we have a number of
samples that are taken from a uniform distribution (24 in
this case) and apply the usual kd-tree algorithm once, we
will have 1 bin that is larger and 1 smaller due to Poisso-
nian noise. While some variance in box size is expected, as
we have a finite number of samples, a bias is introduced in
which the smaller box is always chosen as the 50% credi-
ble level. A new sample picked from the same distribution
would not have a 50% chance of falling in the designated
50% CR,,;,. Consistency is not broken due to the CR,,,;,
being too small in this one case, but that a greedy algorithm



FIG. 3. The largest bias is introduced for a uniform distribution.
The boxes are numbered to track each bin as the kD-tree algo-
rithm is applied. Row 1 shows the bin sizes that would be recov-
ered in an ideal case. Row 2 is an example of the actual returned
bin sizes after applying the kD-tree algorithm. Row 3 shows the
result of applying a greedy algorithm to order the bins, where we
can see that the first x% of samples do not correspond to an area
of x% of the total area.

will systematically choose the bin that is too small.

Impact of Bias

By considering the uniform distribution case we can
show how the bias that we considered for 2 bins scales to
many bins. In figure 3 we show how the bins are created
and ordered. If the binning corresponded perfectly to the
underlying uniform distribution then the bin sizes would
all be equal (row 1). In practice we have finite samples
and as was shown in the 2 bin case there will be a range of
bin sizes produced by the kD-tree algorithm due to Poisso-
nian noise (row 2). Finally we order these bins (row 3) and
count the areas starting from the smallest. At the point we
have counted the samples from the smallest 2% boxes, we
have clearly not counted x% of the area. Note in the figure
that the numerical order of the boxes at the end is entirely
random and depends only on the stochastic fluctuations.

For a non-uniform distribution there is an inherent or-
dering of the bins. We can see in figure 4 how this order-
ing counteracts the stochastic bias. Bins which are shrunk
most by stochastic variations no longer necessarily end up
at the head of the ordering and similarly enlarged bins wont
necessarily end up in the tail. There is still a bias towards
having confidence levels that are too small, but its not so
pronounced.

On one hand this means that the severity of the bias de-
pends on the background distribution and so we cannot ap-
ply a universal correction. On the other hand we can test
the uniform distribution case with varying numbers of total
samples, and numbers of samples in each bin, to quantify
the bias in the worst case.

Using this we may state a worst case correction in which
we relabel the CR,,;,. This would still not be consistent,
though credible regions would now be too conservative in

FIG. 4. The non-uniform case has some inherent ordering which
counters the stochastic bias. The boxes are numbered to track
each bin as the kD-tree algorithm is applied. Row 1 shows the
bin sizes that would be recovered in an ideal case. Row 2 is an
example of the actual returned bin sizes after applying the kD-tree
algorithm. Row 3 shows the result of applying a greedy algorithm
to order the bins. The bias towards small credible regions still
shows but is less pronounced than the uniform distribution case.

contrast to the ‘uncorrected’ results.

Test distributions

To show some examples of how this bias can be seen
in practice we created a large number of test cases (4000).
Each test case consists of a large number (2!°) of samples
drawn from a given distribution. We consider the uniform
and gaussian distributions as examples of poorly and accu-
rately found signals. To see the bias in practice we took
the test cases and applied the kD-tree algorithm to them.
Taking a new point from the same distribution, we treat
this test sample like a signal and ask which credible region
it falls in. As stated before we know that the test sample
should fall within the 2% credible region 2% of the time.
We test to see if this fraction vs CL relation holds. By
using a large number of test cases and with a test sample
that is drawn from the same distribution as the bulk of the
samples, any observable deviation from the expected rela-
tion comes from the systematic bias we have just discussed.
Figures 5 and 6 show that there is significant bias in both
cases and the uniform curve does indeed deviate more than
the gaussian one, as expected from our previous arguments.
The sagging from the expected diagonal line on these p-p
plots indicates a bias towards small CR,,,;,,. We also show
the dependence on samples left in each bin; fewer samples
in each bin exacerbates the effect of Poissonian noise and
increases the bias towards small CR,,;,,.

2-STAGE PROCESS

Our suggestion for a consistent binning method is to
have a 2-stage process that separates the ordering of the
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FIG. 5. For a range of CLs, the fraction of runs in which the test
sample fell within the CR,,,;,, computed via the standard kD-tree
algorithm is shown. This was done using 4000 runs, each with
215 samples drawn from a 2d uniform distribution. Each line
denotes the number of samples per kD-tree bin.
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FIG. 6. For a range of CLs; the fraction of runs in which the test
sample fell within the CR,,,;,, computed via the standard kD-tree
algorithm is shown. This was done using 4000 runs, each with
215 samples drawn from a 2d gaussian distribution. Each line
denotes the number of samples per kD-tree bin.

bins from the determination of credible levels. Randomis-
ing the list of samples and splitting them into 2 equal sized
groups, we use the first to construct the bins using the kD-
tree algorithm. We then throw away the samples, but keep
the ordering of the bins stored which will be used later to
construct the confidence levels. We then take the remaining
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FIG. 7. For a range of CLs, the fraction of runs in which the test
sample fell within the CR,,,;,, computed via the 2-step kD-tree
algorithm is shown. This was done using 4000 runs, each with
215 samples drawn from a-2d gaussian distribution. Each line
denotes the number of samples per kD-tree bin. It can be clearly
seen that the results follow the expected diagonal.

samples and ‘fill up’ the empty tree. Finally, to construct
the confidence levels we follow the previous method where
the bins are ordered and we count samples until we reach
the appropriate fraction. The difference from before is that
the order of the bin list comes from the first stage while
the samples are counted from the second. To show that the
method works we have recreated the previous test with a
gaussian distribution but using the 2-stage process to pro-
duce CR,,,;;, and it can be seen in figure 7 that the method
is consistent for any number of samples per bin.

Why it works

In the first stage we have used the samples to do 2 jobs.
We have created bins that change in size according to the
probability density and so have still fixed the resolution is-
sue that KD trees were originally chosen for. There is also
an appropriate choice of bin ordering, that reflects the gen-
eral shape of the PDF. Then, because the second set of sam-
ples, that we use to fill the bins, are independent of the first
step then the systematic bias is gone. Any bins that are too
small will have an expected sample count less than the av-
erage samples per bin, while bins that were created slightly
too large will have a larger expectation value. Consider
again figure 2 for a uniform distribution. The first stage will
again create 1 bin that is too large and another that is too
small. Again we find that the smaller bin will be counted
first, but this time the samples are thrown away before we
count. The second set of samples is put in these bins, with
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FIG. 8. Distribution of the 50% CR,,;,, areas recovered by the
1-step and 2-step binning process from 4000 runs. For both al-
gorithms the number of samples per bin is fixed at 8. The 215
samples produced for each run are taken from a 2-dimensional
gaussian distribution with a standard deviation of 0.2

an expectation value of 40% of the samples falling in the
smaller bin, with some variance around this value. While
the variance of the returned credible level of this bin will
have increased due to less samples being used (half were
thrown away), the expectation value for the credible level
is now correct.

Areas

Until this point we have concentrated on whether the
credible levels produced by the 2-stage kD-tree algorithm
are consistent. What we would like is recovered CR,,,;,,
that can be considered close to optimal. Turning again to
the 2-d gaussian distribution case we will now consider the
50% credible level as a useful example. Infigure 8 we show
the distribution of recovered areas of the 50% CR,,;,, for
the 4000 realisations of the gaussian curve we used previ-
ously. For this simple case we can calculate the area of the
(unique in this case) optimal CR,,,;,, against which we can
compare our methods. In figure 8 we plot this for both the
standard kD-tree algorithm that uses the greedy algorithm
to calculate CR,,,;,,, and the 2-stage version. The standard
kD-tree results in consistently too small areas, which can
be understood simply by remembering that the calculated
credible levels are systematically too low. As this issue
was fixed by the 2-stage kD-tree algorithm then we aren’t
biased towards small areas. While we now pick consistent
credible levels we may not always choose the optimal one
and this results in a tendency towards higher areas. The
variance on the recovered area is greater for the 2-stage
method than for the standard one. This is because we only
use half the samples to calculate the credible levels.

In figure 9 we plot the same test, but only using the 2
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FIG. 9. Distribution of the 50% CR,,,;,, areas recovered by the 2-
step process from 4000 runs. The 2'5 samples produced for each
run are taken from a 2-dimensional gaussian distribution with a
standard deviation of 0.2. The colours correspond to the number
of samples in each bin.
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FIG. 10. Plot of the fractional errors on areas, (CR,,in -
true)/true), vs CL. This was done using 4000 runs, each with

215 samples drawn from a 2-dimensional gaussian n distribution.
Colours denote the number of samples in each bin.

stage algorithm and with differing numbers of samples per
bin. This shows, as expected, that the more samples per
bin the closer we get to the optimal case as the effect of
Poissonian noise on samples per bin goes down. In prac-
tice we cannot always use so many samples per bin as it
may be computationally expensive to produce so many in-
dependent samples.

In figure 10 we plot the relative difference between cal-
culated and true CR,,;,, for the full range of CLs. We can
see that the calculated CR,,,;,, are always greater than the
true value, as expected from the consistency condition. Op-
timality is generally improved by increasing the number of
samples, but for the larger CLs there is a sudden rise in the
areas calculated. This is a result of there being too few bins



FIG. 11. The density of 2'° samples taken from the bimodal
gaussian distribution has been plotted using the kD-tree algo-
rithm. The standard deviation of each gaussian is 1/20th of the
distance between the two peaks.

and so bins that extend to the parameter bounds become
relevant. This is a problem because the edges of parame-
ter space can often be chosen reasonably arbitrarily. With
more samples and bins we can often find a more optimal
CR,,,;, that doesn’t include an edge bin.

The lower limit of the number of bins that are required
such that no edge bins are used in the calculation of CR,,,;,,
is simply found. For any given setup with n? boxes there
will be 4n—4 boxes that touch the boundary. If for example
we want the 90% CL then we need the fraction of bounding
boxes to be < 0.1. i.e.

dn — 4
- <1-CL 2)

forCL=09 = n>=39

so that if we want 64 samples per bin we are going to need
at least ~ 200, 000 samples, and > 24, 000 for 8 samples
per bin, remembering that we had to double the number of
samples needed to apply the 2-step algorithm.

Bimodal Gaussian Distribution

As an example of a less trivial example we consider a bi-
modal distribution, created from two 2-dimensional gaus-
sian distributions, each with a standard deviation of 0.2 and
separated by 10, as seen in figure 11. The separation was
chosen to belarge so that the two gaussians do not overlap
in any significant way. We can see how well the kD-tree
copes with this by again testing the errors in areas over
4000 runs, each with 2'® samples, see figure 12. The per-
formance of the 2-stage kD-tree algorithm seems to be rea-
sonably consistent with previous results, with the exception
of the placing of the breaking point in CL, at which the al-
gorithm performs badly. This point is for smaller CL than
before as we have effectively increased the number of edge
bins. For the bimodal distribution there are a number of
bins that stretch between the 2 peaks, that have a similar ef-
fect to edge boxes in that they result in over sized CR,,,;,,Ss.
This is the reason that the previously calculated required
number of bins (equation 2) was a minimum. Distributions
that are more complicated than a simple gaussian, partic-
ularly multi-modal distributions, will require more bins to
reach the required optimality.
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FIG. 12. Fractional errors on areas. This was done using 4000
runs, each with 21° samples drawn from a 2-dimensional bimodal
gaussian distribution. Colours denote the number of samples in
each bin.

DISCUSSION

We have presented a post-processing algorithm that sat-
isfies the condition of consistency. We have shown the con-
ditions under which this 2-stage kD-tree produces reason-
ably optimal credible regions. There is clearly a balance to
be struck between increasing the samples per bin to reduce
the effects of Poissonian noise and having enough bins to
both avoid parameter space edges and have good resolu-
tion. The structure of a kD-tree makes it particularly sim-
ple to use, in that it is still constructed from rectangular bins
and integrating over regions is therefore straightforward.

We do not claim that this method is always the one to
choose, but the issues we have considered must always be
taken into account when constructing the post-processing
analysis. One possible example is to use the standard kD-
tree algorithm, but use the value of the posterior to order the
bins. Within each bin will be a set of samples with attached
values of the posterior which can be used to estimate the
integrated posterior within that bin. This is less straightfor-
ward than first appears as we may have marginalised over
a few parameters, and so the integral will be over a few
dimensions, with only a few samples to evaluate this re-
gion. But again, the important feature is that the bin order
is separated from the construction of the bins.

A very common method of recreating density functions
from samples is kernel density estimation, where each sam-
ple is replaced with a function, often a multi-dimensional
gaussian. The density function is then just the sum of all
these. In reality this method has its own issues, the width
of each gaussian must be calibrated and may not accu-
rately represent the background distribution. A modified
version with a 2-stage algorithm that also identifies clus-
tering of samples has been implemented for the analysis of
gravitational-wave data [4].



ACKNOWLEDGEMENTS

We are grateful to members of the LIGO-Virgo col-
laboration parameter estimation group, and particularly to
Birmingham colleagues, for many useful discussions.

* tsidery @ googlemail.com

[1] B. Silverman, Density Estimation for Statistics and Data
Analysis (Density Estimation for Statistics and Data Anal-
ysis, 1986).

[2] T. Sidery et al., Phys. Rev. D 89, 084060 (2014).

[3] J. L. Bentley, Commun. ACM 18, 509 (1975).

[4] L. P. Singer et al., ArXiv e-prints (2014), arXiv:1404.5623
[astro-ph.HE].



