The STAMP all-sky search for long-duration gravitational-wave transients

Tanner Prestegard for the STAMP all-sky working group

University of Minnesota

October 9, 2015

LIGO-P1400138

STAMP all-sky S5/S6 paper

Paper draft on the DCC: <u>LIGO-P1400138</u>.

Further comments welcome!

Target journal: PRD.

Stochastic Transient Analysis Multi-detector Pipeline

- Looking for long-duration unmodeled GW transients (lasting from a few to thousands of seconds).
 - Accretion disk instabilities and fragmentation.
 - Rotational instabilities in PNS remnants, PNS convection, r-modes, and more.

• Procedure:

- Cross-correlate data from multiple IFOs.
- Make ft-maps of crossand auto-power.
- Parse ft-maps with a clustering algorithm to identify groups of pixels corresponding to GW transients.

STAMP all-sky working group:

Marie Anne Bizouard, Nelson Christensen, Michael Coughlin, Samuel Franco (graduated), Valentin Frey, Patrice Hello, Vuk Mandic, and Tanner Prestegard.

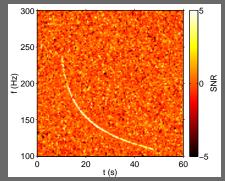


Figure 1: STAMP SNR ft-map, including a simulated GW signal. This is an energy SNR.

STAMP all-sky search

What:

• Use STAMP (designed for targeted searches) for an all-time/all-sky search.

Why:

- Search for GWs emitted without an EM counterpart.
- Search for GWs emitted by unknown/unmodeled mechanisms.

Challenges:

- Unknown source location and polarization.
- Computationally intensive.

Strategy:

- Clustering of positive and negative pixels.
- ullet 5 randomly chosen sky positions which span the sky with pprox 15% sensitivity loss.

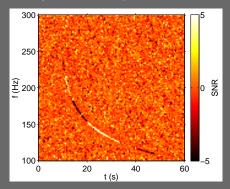


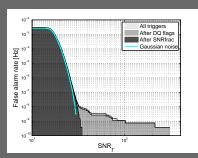
Figure 2: Recovery of a simulated GW signal when looking in the wrong direction.

Search description

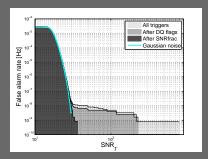
Data selection:

- S5: 283.0 days of coincident H1-L1 data.
- S6: 133.2 days of coincident H1-L1 data.
- CAT 1 flags: from stochastic isotropic search.
 - Also added burst injection flags.
 - Almost identical to list used by burst all-sky searches.
- 100 time-slides from each science run.
- Data divided into 500 second-long ft-maps, 50% overlapping.
- Frequency range: 40 1000 Hz.

Data quality:


- STAMP glitch cut: checks for consistency between detectors using auto-power spectra¹.
- Frequency notches: primarily 60 Hz harmonics, violin modes, calibration lines.
 - S5: 47 1 Hz-wide bins.
 - S6: 64 1 Hz-wide bins.

¹T. Prestegard et al., Class. Quantum Grav. 29, 095018 (2012).


Background study results

Post-processing cuts:

- SNRfrac: veto triggers that deposit more than 45% of their power in a single time segment. Threshold tuned to maximize search sensitivity.
- CAT 2 DQ flags: chosen by estimating significance of coincidence with 100 loudest triggers from background studies. Used only for GW candidate follow up.

(a) S5, 100 time-slides.

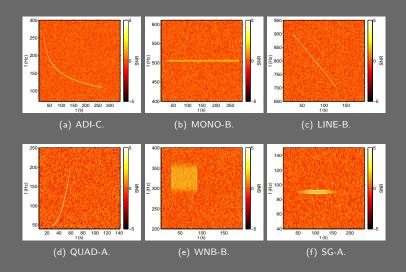
(b) S6, 100 time-slides.

Waveform descriptions

All waveforms range between 9 - 250 s in duration and 50 - 900 Hz.

Physical waveforms:

• Four accretion disc instability (ADI) waveforms^{2,3}.

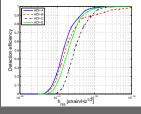

Ad hoc waveforms:

- Two monochromatic waveforms.
- Two linear (frequency-time evolution) waveforms.
- Two quadratic (frequency-time evolution) waveforms.
- Two sine-Gaussian waveforms.
- Three band-limited white noise burst waveforms.

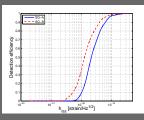
²M. H. van Putten et al., Phys. Rev. D **69**, 044007 (2004).

³C. D. Ott and L. Santamaría, LIGO DCC T1100093 (2011).

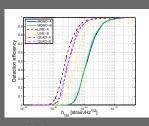
Waveform plots

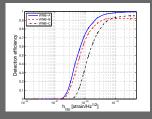

Injection studies

Details:


- Waveforms injected at 1500 random times in each dataset.
- Each waveform studied at 16 different signal amplitudes.
- Total: 1500 trials per waveform per amplitude per dataset.
- Random sky position and waveform polarization.

Injection study results


Efficiency vs. *h*_{rss} curves for all waveforms considered in the injection study. Curves shown are for S6 and include SNRfrac vetoes and CAT 2 data quality flags.


(a) ADI waveforms.

(c) Sine-Gaussian waveforms.

(b) Sinusoidal waveforms.

(d) White noise burst waveforms.

Zero-lag results

Loudest triggers:

Dataset	SNR _Γ	FAR [yr ⁻¹]	FAP	GPS time	Freq. [Hz]
S5	29.65	1.00	0.54	851136555.0	129 - 201
S6	29.84	0.36	0.12	949728041.5	152 - 235

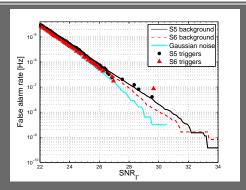


Figure 3: S5 and S6 zero-lag triggers superimposed on time-slide triggers.

Upper limits - visible volume

Visible volume: measure of volume of space accessible to search. Requires distance calibration, only calculated for ADI waveforms.

$$V_{\mathsf{vis}}(\mathsf{SNR}_{\Gamma}) = \int_0^\infty 4\pi \epsilon (\mathsf{SNR}_{\Gamma}, r) r^2 dr$$

False alarm density (FAD): expected number of background triggers for a given visible volume. Useful for comparing triggers from different networks or searches

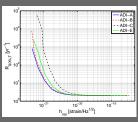
$$\mathsf{FAD}(\mathsf{SNR}_\Gamma) = \frac{\mathsf{FAR}(\mathsf{SNR}_\Gamma)}{V_{\mathsf{vis}}(\mathsf{SNR}_\Gamma)}$$

Rate upper limits:
$$R_{90\%, VT} = \frac{2.3}{\sum_{k} V_{\text{vis}, k}(\text{FAD}^{\star}) \times T_{\text{obs}, k}}$$

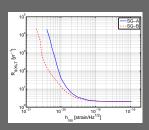
Waveform	$V_{\rm vis}~[{ m Mpc}^3]$		$R_{90\%, VT}$ [Mpc ⁻³ yr ⁻¹]
	S5	S6	
ADI-A	$1.6 imes 10^3$	3.2×10^3	1.0×10^{-3}
ADI-B	5.4×10^{4}	8.6×10^{4}	3.6×10^{-5}
ADI-C	7.0×10^3	$1.4 imes 10^4$	2.4×10^{-4}
ADI-E	$1.5 imes 10^4$	2.9×10^{4}	1.1×10^{-4}

Table 1: Visible volume upper limits on ADI waveforms. Uncertainties included; they are dominated by calibration error and marginalized over using a Bayesian method.

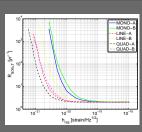
Upper limits - efficiency

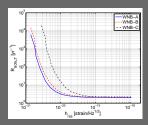

For waveforms that aren't distance calibrated, we use the efficiency to calculate rate upper limits:

$$R_{90\%,\mathsf{T}} = rac{2.3}{\displaystyle\sum_{k} \epsilon_k (\mathsf{SNR}^\star_{\mathsf{\Gamma},k}) T_{\mathsf{obs},k}}$$


This results in an upper limit as a function of signal strength. Uncertainties are dominated by calibration error and are accounted for by adjusting the efficiency upward.

Upper limits - efficiency


Rate upper limit vs. h_{rss} curves for all waveforms considered in the injection study.



(c) Sine-Gaussian waveforms.

(b) Sinusoidal waveforms.

(d) White noise burst waveforms.

Discussion

Difficult to compare results directly to short-transient searches due to usage of different waveforms. Longer waveforms will require a more energetic source since the energy is more dispersed in time.

Can estimate isotropic energy for a pair of rotating point masses:

$$E_{\rm GW} \simeq h_{\rm rss,50\%}^2 r_{50\%}^2 \pi^2 f_{\rm GW}^2 \frac{c^3}{G}$$
.

For ad hoc waveforms, we fix a fiducial distance of 10 kpc.

Results:

- ADI: $1.3 \times 10^{-7} 1.2 \times 10^{-6} \ \mathrm{M_{\odot}c^2}$.
- Sinusoidal: $6.1 \times 10^{-7} 2.3 \times 10^{-4} \ \mathrm{M_{\odot}c^2}$.
- Sine-Gaussian: $1.1 \times 10^{-5} 2.5 \times 10^{-4} \text{ M}_{\odot} \text{c}^2$.
- White noise bursts: $2.1 \times 10^{-5} 5.4 \times 10^{-4}~{\rm M}_{\odot}{\rm c}^2$.

Compare to a protoneutron star at 10 kpc developing matter convection over 30 s: $4\times10^{-9}~{\rm M_{\odot}c^2}.^4$

⁴E. Mueller et al., Astrophys. J **603**, 221 (2004).

Conclusions

First upper limits on long-lasting GW transients with LIGO data.

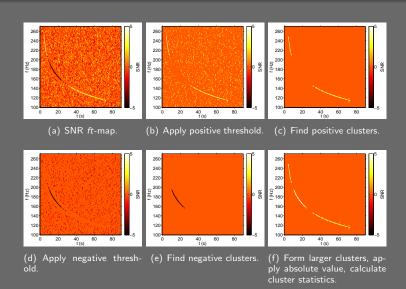
Connection to stochastic search: a GW transient lasting days or more could produce a signal in isotropic or directional stochastic searches.

Review has been completed (see Erik's talk).

Search is now focusing on O1 data.

Paper draft on the DCC, comments welcome! <u>LIGO-P1400138</u>

Target journal: PRD.


Extra Slides

Analysis description

- Calculate cross-power and auto-power ft-maps.
- Notch problematic frequency bins.
- Check each ft-map column with the STAMP glitch flag⁵ and notch columns identified as glitchy.
- Run clustering algorithm on SNR ft-map.
- If a cluster was found, calculate cluster statistics.
- Save results for post-processing.

⁵T. Prestegard et al., Class. Quantum Grav. **29**, 095018 (2012).

Clustering overview

ADI waveform details

Waveform	$M[M_{\odot}]$	a*	ϵ	Duration [s]	Frequency [Hz]
ADI-A	5	0.30	0.050	39	135 - 166
ADI-B	10	0.95	0.200	9	110 - 209
ADI-C	10	0.95	0.040	236	130 - 251
ADI-E	8	0.99	0.065	76	111 - 234

Table 2: List of ADI waveforms used to test the sensitivity of the search. Here, M is the mass of the central black hole, a^* is the dimensionless Kerr spin parameter of central black hole, and ϵ is the fraction of the disk mass that forms clumps. Frequency refers to the ending and starting frequencies of the GW signal, respectively. All waveforms have an accretion disk mass of $1.5~M_{\odot}$.

Sinusoidal waveform details

Waveform	Duration [s]	f ₀ [Hz]	df dt [Hz/s]	$\frac{d^2f}{dt^2}$ [Hz/s ²]
MONO-A	150	90	0.0	0.00
MONO-B	250	505	0.0	0.00
LINE-A	250	50	0.6	0.00
LINE-B	100	900	-2.0	0.00
QUAD-A	30	50	0.0	0.33
QUAD-B	70	500	0.0	0.04

Table 3: List of sinusoidal waveforms used to test the sensitivity of the search. Here, f_0 is the initial frequency of the signal, $\frac{df}{dt}$ is the frequency derivative, and $\frac{d^2f}{dt^2}$ is the second derivative of the frequency.

WNB and SG waveform details

Waveform	Duration [s]	f ₀ [Hz]	au [s]
SG-A	150	90	30
SG-B	250	505	50

Table 4: List of sine-Gaussian waveforms used to test the sensitivity of the search. Here, τ is the decay time of the Gaussian envelope.

Waveform	Duration [s]	Frequency band [Hz]
WNB-A	20	50 - 400
WNB-B	60	300 - 350
WNB-C	100	700 - 750

Table 5: List of band-limited white noise burst waveforms used to test the sensitivity of the search.