

Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries

2014 LIGO SURF Summer Seminar August 21st, 2014

Sophia Xiao, University of Virginia Mentors: Alan Weinstein, Tjonnie Li, Surabhi Sachdev

08/21/2014 LIGO-G1400863-v1 LIGO Laboratory

Introduction

Moving towards Advanced LIGO

- » Hardware: Optics, Lasers, Seismic Isolation, Suspensions
- » Software: Data Acquisition, Data Analysis
- CBC-BBH group is developing the GSTLAL analysis pipeline for BBH detection at aLIGO
 - » iLIGO: iHOPE
 - » aLIGO: aHOPE, GSTLAL

Objectives

- Run high-statistics simulation to evaluate the sensitivity of the GSTLAL analysis pipeline
- Test the readiness of the GSTLAL analysis pipeline for advanced LIGO
 - » Include aligned spins
 - » Push down cut off frequency to 30 Hz
 - » Expand the mass range

GSTLAL Analysis Pipeline

Distinguishing Feature:

• Low latency: compare with E&M searches

Improvements:

- IMR waveforms rather than SpinTaylor
- Includes aligned spins
- (Future: To include precessing spins)

LIGO GSTLAL Analysis Pipeline Flowchart

LIGO **GSTLAL** Analysis Pipeline Flowchart

08/21/2014 LIGO-G1400863-v1

Matched Filtering

- Motivation: optimal detection technique for known modulated sinusoidal data, with Gaussian and stationary detector noise
- Output: Signal-to-noise ratio

$$\rho(t) \equiv \frac{|z(t)|}{\sigma} \qquad \qquad \sigma = \sqrt{\langle \tilde{h} | \tilde{h} \rangle} = \sqrt{4 \int_0^\infty \frac{|\tilde{h}(f)|^2}{S_n(f)} df}$$
$$z(t) = \langle \tilde{s} | \tilde{h} \rangle = 4 \int_0^\infty \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_n(f)} e^{2\pi i f t} df$$

08/21/2014 LIGO-G1400863-v1 LIGO Laboratory

 $\mathfrak{S}_n(f)$

 J_0

Coping with "glitches"

- Not perfect detectors have "glitches": non-Gaussian, non-stationary detector noise fluctuations
- χ^2 test: compares data with template + Gaussian noise
- Computed simultaneously with SNR in GSTLAL

LIGO

Significance of Coincident Triggers

 Final discriminator: false alarm probability (FAP): probability of identifying noise as signals at a likelihood L when the data contain only noise

$$\mathcal{L}(
ho_1,\chi_1^2,\dots
ho_D,\chi_D^2,ar{ heta})=rac{P(
ho_1,\chi_1^2,\dots
ho_D,\chi_D^2,ar{ heta}|s)}{P(
ho_1,\chi_1^2,\dots
ho_D,\chi_D^2,ar{ heta}|n)}$$

- FAP is calculated from SNR and χ^2
- In practice, use inverse false alarm rate (IFAR)

Testing GSTLAL pipeline

- Stochastic template banks: specified mass range and spin range
- Injections: simulated signals + recolored S6 data
- Pipeline runs
- Evaluate the pipeline efficiency through injection accuracy, missed and found plots, horizon distance, SNR vs. χ^2 , FAP

Pipeline Run Status – Banks

	Shape	Number of Templates	Component Mass	Total Mass	Mass Ratio	F-low	Spin
Sq1	square	13713	[4.9, 22]	[9.8, 44]	[1, 4]	20 Hz	[-0.9, 0.9]
Sq2	square	27430	[4.9, 22]	[9.8, 44]	[1, 4]	$20 \mathrm{Hz}$	[-0.9, 0.9]
Sq3	square	18370	[4.9, 22]	[9.8, 44]	[1, 4]	$20 \mathrm{Hz}$	[-0.2, 0.9]
Sq4	square	12237	[4.9, 22]	[9.8, 44]	[1, 4]	30 Hz	[-0.9, 0.9]
Trape5	trapezoid	32289	[1, 44]	[9.8, 44]	[1, 4]	30 Hz	[-0.9, 0.9]
Trape6	trapezoid	100713	[1, 44]	[9.8, 44]	[1, 4]	$20 \mathrm{Hz}$	[-0.9, 0.9]
LgSq	square	13561	[4.9, 55]	[9.8, 110]	[1, 4]	30 Hz	[-0.9, 0.9]
LgTrape	trapezoid	32597	[1, 110]	[9.8, 110]	[1, 4]	30Hz	[-0.9, 0.9]

Pipeline Run Status – Dailies

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Sq1	\checkmark	Х	Х	Х	Х	Х	Х
Sq2	\checkmark						
Sq3	\checkmark	Х	Х	Х	Х	Х	Х
Sq4	\checkmark	Х	Х	Х	Х	Х	Х
Trape5	\checkmark						
Trape6	Х	Х	Х	Х	Х	Х	Х
LgSq	\checkmark	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
LgTrape	\checkmark	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle

Table 4.2: GSTLAL daily runs status ($\sqrt{:}$ Finished; \bigcirc : Running; \triangle : Planning; X: No plan to run.)

08/21/2014 LIGO-G1400863-v1 **LIGO Laboratory**

Ex: Day 1 Run with Trape5 Bank

2 Table 2. BANK PARAMETERS SUMMARY

LIGO

BANK PARAMETERS	VALUE	
Number of Templates	32289	$a_{35} - q = 1 $
Approximant	IMRPhenomB	q = 4
Noise Model	aLIGOZeroDetHighPower	
Mass1 Range	[1, 44]	
Mass2 Range	[1, 44]	ີ ຊີ 20
Total Mass Range	[9.8, 44]	15
Mass Ratio Range	[1, 4]	
Spin1 Range	[-0.9, 0.9]	
Spin2 Range	[-0.9, 0.9]	
Cut Off Frequency	30	$0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40$

08/21/2014 LIGO-G1400863-v1 LIGO Laboratory

 $\chi_{
m eff}$

Ex: Missed and Found

• Aids in diagnosing the pipeline and providing the expected pipeline sensitivity to real signals Distance vs. Chirp Mass (With H1, L1, V1 Operating)

LIGO-G1400863-v1

Ex: Horizon Distance

- Useful search sanity check
- Horizon distance: where a CBC system will produce a signal with expected SNR of 8
- Mean Sensitive Distance: horizon distance averaged over all sky position and orientation angles
- To evaluate the sensitivity:
 - » Compute theoretical horizon distances
 - » Compare with real pipeline run horizon distances

08/21/2014 LIGO-G1400863-v1

Ex: Pipeline Efficiency

• PSD function for horizon distance calculation

Theoretical mean sensitive distance

LIGO

Check: look at 15 solar masses

• Mean sensitive distance from pipeline runs

LIGO

Check: look at 15 solar masses

LIGO

Expanding BBH Mass Range

- Pushing up to 100 solar masses, down to 6 solar masses
- Had problems, need to adjust injection distance

Timing Analysis

- A pipeline has many processes, which in turn have many jobs
- Different jobs of the same process take different time to finish

Timing Analysis

• Histogram of gstlal_inspiral

Conclusion

- We have successfully proved the effectiveness of the GSTLAL analysis pipeline, down to 30 Hz cut off frequency, with aligned spins included, and the whole mass range covered
- There is still optimization work to do regarding the pipeline's performance and timeliness, but soon, GSTLAL will be ready for aLIGO

LIGO

Future Work

- Combine dailies into weeklies, weeklies into monthlies, etc.
 - » Weeklies: combine daily coincident triggers and backgrounds together. Can better estimate backgrounds and separate them.
 - » Monthlies, yearlies: collections of weeklies for better visualization
- Figure out reasons for outliers
- Compare existing runs with runs using Gaussian noise
- Tune the pipeline parameters for better accuracy and faster run time

Acknowledgements

- Prof. Alan Weinstein, Tjonnie Li, Surabhi Sachdev
- LIGO Scientific Collaboration
- Caltech SURF
- NSF

Thank you!

08/21/2014 LIGO-G1400863-v1 LIGO Laboratory

Backup Slides

Successful recovery of mchirp

LIGO

Ex: Injection Accuracy

• Successful recovery of time

• Successful recovery of spins Effective Spin Accuracy in H1 (IMRPhenomBpseudoFourPN Injections)

LIGO

Ex: Missed and Found Table

5 Table 2. INJECTION SUMMARY TABLE

ON INSTRUMENTS	PARTICIPATING INSTRUMENTS	MISSED/FOUND
H1V1	H1V1	FOUND: 35
H1V1		MISSED: 374
H1L1V1	H1L1	FOUND: 404
H1L1V1	H1L1V1	FOUND: 151
H1L1V1	H1V1	FOUND: 9
H1L1V1	L1V1	FOUND: 6
H1L1V1		MISSED: 1096
H1L1	H1L1	FOUND: 16
H1L1		MISSED: 26
L1V1	L1V1	FOUND: 26
L1V1		MISSED: 206

5 Table 2. Summary of missed and found injections broken up by detector time

08/21/2014 LIGO-G1400863-v1 LIGO Laboratory

• Well separated signals and backgrounds

LIGO

Ex: Detection Statistics

• FAP calculated from SNR and χ^2

H1: likelihood log base 10 (number + 1)

