

Searching for Higher Order Cladding Modes in Fiber Optic Based Optical Levers

Brian Charous (Carleton College)

Mentor: Eric Gustafson

- Optical Lever System
- Single Mode Optical Fibers
- Fiber Modes
- Beam Propagation
- Results

Optical Lever System

• Diode laser

- Coupled to single-mode optical fiber
- Projected through telescope, reflected off test mass and onto quadrant photodiode
- Max telescope throw 66m

Optical Lever System

Optical Lever System Problems

- Power shift associated with change in pointing of beam
- Ring at about 3-4% power

Single Mode Optical Fiber

• Light only transmitted down the fiber (single mode)

• Vnumber
$$V = \frac{2\pi}{\lambda} a \sqrt{n_{core}^2 - n_{cladding}^2} = \frac{2\pi}{\lambda} a \mathrm{NA}$$

- V < 2.405 for single-mode (ours \sim 2.08)
- Fiber mode

$$H_{x0} = -\sqrt{2/\pi} (\epsilon_0/\mu_0)^{1/4} \frac{W}{aVJ_1(U)} \sqrt{n_2 P} \begin{cases} J_0(U\frac{r}{a}) & :r \le a\\ \frac{J_0(U)}{K_0(W)} K_0(W\frac{r}{a}) & :r \ge a \end{cases}$$

LIGO-G1400885-v1

Beam Propagation

- Propagating gaussian remains gaussian, can use ABCD propagation methods
- Propagating fiber form changes
- Use Hankel transform method to propagate fiber profile through free space and lenses

Searching for Higher Order Fiber Modes

- Use beam profiler to look at output of fiber
- Hard to look at output large angle of divergence out of fiber
- Take two sets of data, saturating the beam profiler to see into the wings
- Look at output of fiber both directly and through a lens with short focal length

Searching for Higher Order Fiber Modes

- Take fiber profile from beam profiler
- Propagate through free space and any lenses, compare with propagated theoretical fiber form
- Compare fiber in multiple physical orientations, with a different laser

Comparing Fiber Modes

LIGO-G1400885-v1

Comparing Fiber Modes

LIGO-G1400885-v1

Fiber Mode Results

- The fiber laying in different positions doesn't alter its profile
- Changing the laser doesn't change much either
- It appears that higher order fiber modes aren't affecting the optical lever system

Searching for the Ring

- Use same beam propagation to simulate telescope
- Propagate fiber profile and gaussian to see if ring pattern occurs
- If lens clips the beam, diffraction might occur, causing ring

Searching for the Ring at 66 meters

LIGO-G1400885-v1

Searching for the Ring

- Ring doesn't seem to occur when propagating the theoretical fiber mode
- Take beam profile measurement at beam waist after sending through the first lens of the telescope, propagate through the second lens and into the farfield

Searching for the Ring at 66 meters

Possible Sources of the Ring

- Propagation code assumes thin lenses, but we have thick lenses
- If beam isn't perfectly centered or lens is tilted, lens causes aberrations

Future Work

- Simulate thicker lenses in propagation code
- Make measurement of beam profile using a power meter and translation stage
- Use HeNe laser instead of fiber-coupled diode laser as input of telescope

Acknowledgements

- Thanks to everyone at Caltech!
- NSF

- Special thanks to:
 - Eric Gustafson
 - Liyuan Zhang
 - Bill Kells
 - Matt Abernathy