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The aLIGO network stands to make hundreds of detections over the lifetime of the project. While
there is much to be learned from the parameters of single events, the parameter distribution of the
population of events is also of great interest for astrophysics. The goal of this project is to develop
the tools for estimating such population distributions and accounting for selection bias in such
inferences. We will then apply the method to a simulated population of binary systems of neutron
stars in order to estimate their mass distribution.

I. INTRODUCTION/BACKGROUND

aLLIGO will have a likely detection rate of 40 events per year, with a lower limit of 0.4 per year and upper limit of
400 per year [1]. While the detections themselves will be a hugely significant discovery, we’d like to be able to also
use these detections in order to make inferences about the astrophysical sources, paving a path for gravitational wave
astronomy. This project will develop a method for inferring parameters of a population of such sources. We use the
example of the mass distribution of binary neutron stars in order to develop the method. We would like to infer the
parameters of the population’s mass distribution (for example, the mean and standard deviation for a gaussian) by
using a Markov-Chain Monte Carlo method to sample parameter space and obtain distributions for each parameter
governing the universe-set distribution of a population.

There is evidence to suggest that two different types of supernovae could give rise to a bimodal distribution of
neutron star masses [2]. Namely, these supernovae are iron-core collapse and electron capture [3]. All stars begin
their lives by converting hydrogen into helium at a decreasing rate until gravity overpowers and the core contracts.
In an iron-core collapse supernova, this contraction causes the core to burn elements of increasing mass until the
core has produced iron. Up until this point, the star has supported itself by fusing elements into heavier elements.
Iron, however, is very stable so the core gives in to the force of gravity and begins to collapse [4]. In the case of
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FIG. 1: A visual representation of the stages of element fusion the neutron star goes through during an iron-core
collapse supernova. [Image: Swinburne University]

electron-capture supernovae, a white dwarf’s core is supported by electron degeneracy pressure caused by the Pauli
Exclusion Principle (no two electrons can occupy the same state). However, as the mass of the white dwarf increases,
it reaches the Chandrasekhar limit, at which point the core can no longer support itself and collapses [5]. These
two supernovae are speculated to give rise to neutron stars of slightly different masses, suggesting that we ought to
look for a bimodal distribution of neutron star masses [3], and we would like to be able to develop machinery that
is able to construct this. What we would like to do in this project is develop the tools able to identify a possible
distribution with peaks at 1.35 Mg stars (resulting from iron-core collapse supernovae) and 1.5 Mg stars (resulting
from electron-capture supernovae) [6].

The detection of gravitational waves will allow us to do this, as gravitational waveforms depend explicitly on the
mass (in some form) of the source. We can thus use the waveform of the gravitational wave to figure out what the
mass of the binary neutron star is, as demonstrated in Egs. 3 and 4. The neutron stars coalesce, spinning inward
at an increasing rate, much like a figure skater bringing her arms in as she twirls. As the spinning gets faster, the



frequency of the emitted gravitational wave increases as well. This frequency evolution is a quantity determined by
the chirp mass, given by:

M :M3/5M2/5 (1)

mimsa
mi+mso

where p = is the classic reduced mass of the binary system, and M is the total mass of the system. We can
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FIG. 2: An inspiral binary neutron star produces a gravitational wave of increasing frequency.

determine the waveform of a gravitational wave caused by an inspiral binary star by computing the metric perturbation
from the post-Newtonian expansion of the source [7]. We must take into account the degree to which the gravitational
wave strain is induced in a detector. This strain is given by [8]:

h(f) = hi(f)FL(0,6,9) + hy (f)Fx (0, 6,7) (2)

where }~L+7>< are the plus and cross polarizations, and F.; « are the antenna responses to the incident signal, given in
terms of the altitude, 6, the azimuth, ¢, and the polarization, ¢ [9]:

F, = —cos(0) sin(21) sin(2¢) — % cos? () cos(21)) cos(2¢) — % cos(2¢) cos(29),
and

Fy = % cos?(0) sin(21)) cos(2¢) + % sin(24)) cos(2¢) — cos(0) sin(2¢) cos(21))

The waveform is:

_ 1M -
) = (A2 ) A0t 70050 )
eff
where
) a V2 Gy Je2 [ rGMy\ M —5/6 "
thMpe = 247 1Mpc c3 Mg ’
3 3715 55 15203365 27145 3085
U(f; M, p) =2 fto—2¢0—7/4+—— [0 7+ | o + = | v ™3 — 167072 2ot
(F5 M 1) = 2m fto=20—n/4+ 150 {” +<756 * 9")” v +( 508032 504 ' w2 )V |

G 1/3
o= (Shar) ©)



and
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Here, D is the distance to the source, ¢ is the angle between the line connecting the source and the observer and the
angular momentum vector, M is the chirp mass, 7 is the symmetric mass ratio, given by n = 47, and the phase at
coalescence is ¢.. ¢q is the termination phase, given by:

_ Fy _2cos(t)
¢O _ d)c _ 5 arctan (F‘_i_ 1—HjOS2(l,)) (8)

The parameters named above are classified as extrinsic or intrinsic. An extrinsic parameter is one for which we
need not resort to a template bank for comparison [10]. In other words, an intrinsic parameter is one that is the same
regardless of the parameters of the detector, whereas an extrinsic parameter is one that changes depending on the
observer. The extrinsic parameters here are:

e distance (D)
e sky location (6, ¢)
e polarization (1))
e coalescence phase (¢g)
e inclination ()
and the intrinsic parameters are:
e chirp mass (M)
e symmetric mass ratio ()

We should note that given a binary system, we may only determine the chirp mass, since only the chirp mass and the
total mass show up in the signal-to-noise ratio. This is important for actual experiments, since although it would be
nice to measure the individual masses, inverting the chirp mass and mass ratio distributions leads to component mass
distributions with broad peaks. Finding the chirp mass, on the other hand, results in a sharply peaked distribution.
Thus, the chirp mass is more easily found—there is no way to separate out the masses of the individual neutron stars
without incurring large error.

II. WORK DONE
A. Theory: Hierarchical Modeling

We would like to obtain the mass distribution of the binary neutron star population given the noisy mass distribu-
tions of the individual events. To do this, we follow the technique developed in [11] and [12]. The first goal in this
project is to obtain the probability distribution for the masses of binary neutron stars on an event by event basis. We
obtain this distribution by applying Bayes theorem for an individual event, say event n out of N events [13]:

p(0,)p(Dyl0,)

p(Dn)

where p(Dy,|0) is the likelihood of a set of parameter values given the data set (as opposed to the probability of
obtaining a data set given a model), given by [11]:

p(0n|Dn> = (9)

P(Dn0) o< exp ((Dn|h(8)) — %(h(O)Ih(B») (10)
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where h is the waveform model exhibited by the data set, Dy, and (a|b) is the inner product of the Fourier transform
of the signal which picks out the waveform model from the noise in the data, given by [11]:

ity =1 [~ DTy a1

where S,,(f) is the one-sided power spectral density of the noise.

0,, is the set of intrinsic and extrinsic parameters spelled out in the Introduction, p(Dy,) is the probability of
obtaining this particular data set, given by p(Dp) = [ d0p,p(Dn|60y) and p(@) is our prior—in this case, the information
we already have about the probablhty of measurlng a a set of parameter values. Using this data stream, we can
construct the waveform of the gravitational wave (accounting for noise). We compare this data to our model with
p(Dy|0). We take the prior here to be flat, a general, uninformative prior. Finally, we can marginalize our PDF over
all but one parameter, mass, to produce a one-dimensional PDF [14].
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FIG. 3: A possible mass distribution for binary neutron stars found from radio observations of pulsars. [Image: B.
Kiziltan, et. al.]

Next, we want to use the individual probability distributions in order to construct a so-called distribution of
distributions. In order to do this, we apply Bayes theorem once more to a set of observed distributions. Assuming
that the events are independent, we arrive at the following equality:

N
P({0n )72 (D) = H (D) (12)

We would like to find a distribution of some parameter, t, governed by a set of global parameters, . Ultimately,
we want an expression for p(a|{Dyn}_;). We derive this by first applying Bayes’ Theorem:

p(@)p({Da} )
(D) )

Because the events are independent, we can write this expression as a product of individual events and then
marginalize over the set of local parameters:

plel{Dn}yl,) =

2

pla|{Dn}yly) = (D67 )p(On|a)dbr, (14)

Using the assumption that our parameter of interest, t, separates from the other parameters, we arrive at a final
analytic expression:

N
paltDu}y) = p(@) T] [ s(0D) J;“ J o (15)

where f,(t) = p(t|a).



Finally, we approximate this integral by sampling the distribution at K spots, evaluating and summing the function
at those points, and dividing by the number of points. This gives us our final, computable expression:

N K, (k)
palDa}y) = pla) [[ = 3 Lolln) (16)

B. Theory: Selection Bias

A big problem when inferring population parameters from experimental data is selection bias. Selection bias is a
classic problem in astrophysics in that observed objects may look dimmer if they are farther away. In the case of
LIGO, weak signals are not taken into account. If the signal-to-noise ratio is below some threshold, the data is thrown
out. This method does not account for weak or low-amplitude signals that really were there, and so making inferences
from such data will be biased. This needs to be added into our above derivation.

We consider the following situation, laid out in [15]: we have a set of independent detection time periods. When
a signal above a set threshold is detected the data (a trigger) is recorded as Dy, along with a positive indicator, IT.
When no signal reaches threshold, the data is thrown out but a negative indicator, I, is recorded.

When a trigger is recorded, we can write the posterior distribution on a using Bayes Theorem:

p(a|Dy, IT) =

)p(H|ex) (17)
) 55

where we have marginalized over the set of local models, {H}, of which there must be at least one that describes
the presence of a signal and one that describes the absence of a signal.
In order to compute the first factor in the sum, we marginalize over local model parameter space, O:

p(Dyler, H) = /O (D03, 0, H)p(By|cx, H) A0 (18)
I H

In the complementary case, we start out again by applying Bayes Theorem:

plaI™) = ﬁzpma,mp(ma) (19)
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Since we have now don’t have the actual data, when calculating the first factor in the sum, we must marginalize
over not just local parameter space, but also over the missing data up to the threshold:

(I~ o, H) = / / (D03, 0, H)p(O]xr, H)dDndb, (20)
Oy JD<Dyp

The goal now is to determine the probability of our set of global parameters, ¢, given this set of data and indicators.
As usual, we apply Bayes Theorem:

p(a)p({Dn}p"y, ) (21)

p({Dn}erV:D I)

Using the assumption that each event is independent, we write this as a product. We also note that p({Dn}ﬁzl, I)=

P({Dn}ily):

ple{Du}yy, 1) =

N p(a)
p(a{Dn}n_y, 1) = Dl Hp D;, I|cx) (22)



We now can split up this product into events with a trigger (say there are n of them) and ones without:

N—n
plaf{Da}il, 1) = {D }N [150;. 1) T] ol o) (23)
n=1 j—1 k=1

Now suppose that there are two models—one that predicts a trigger (H') and one that predicts no trigger (% ™).
We can then split up each product into the sums laid out in Eqs. 17 and 19:

N p(a) - + —
p(a{Dn}ny, I) = I NLE H (Dj, I |oe, HO)p(H " |ex) + p(Dy, I o, HT)p(H ™ |e)] x

J:1

1:[ [p(I" |, HD)p(H T ) + p(I ™ o, K )p(H ™ |a)]  (24)
k=1

We now note that the first term in this equality is the posterior distribution derived in Section II A. Thus, we have
our final result:

n

KJ
pla{Du}y 1) = 20— {Dn} 511 %Zf“
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T [l 5504 o) + p(I e ()] (25)
k=1

C. Toy Model: 1D Population Distributions

My first completed task was using a NumPy module called emcee [16] in order to randomly sample a Gaussian
distribution, which simulates collecting data from aLIGO. Each sample was given a random standard deviation, which
simulates the noise that would occur in actual measurements. I was then able to reconstruct the distribution, as shown
in Fig. 4 using the formalism laid out in this section to compute the likelihoods. We constructed a true population
distribution that was a Gaussian with parameters y = 0.4 and ¢ = 0.1. In our calculations, we assumed that the
samples contained Gaussian noise and were being drawn from a normal distribution. The module uses a number of
walkers in order to sample the distribution in steps and reconstruct the original distribution from an array of samples
taken from the “measured” distributions. The results of this are shown in Fig. 4. The implemented method worked
exactly as expected, with the true values of u and o centered at the estimated distributions.

In order to complexity our toy model to be more realistic, we had to sample from a chirp mass distribution instead
of a unimodal Gaussian. Because there is a suggestion that there are two mass-classes of binary neutron stars, we
started with a bimodal distribution of the following form:

h mop)® (] —p) Cmoup)?
m) = e 207 + e 203 26
p(m) V2o V2moo (26)

The graph of this distribution is displayed in Fig. 5

We would like to make a change of variable from this distribution in the individual masses to a probability distri-
bution of the chirp mass. To do this, we first make a change of variable from p(m;j, my), where m; and mgy are the
individual masses of the binary system, to the distribution p(M,n), where M is the chirp mass of the system and

3/5
7 is the symmetric mass ratio. In particular, M = % and 1 = ;M52 The necessary Jacobian for this
transformation is:
M
T (M;m;ma,me) = (27)

W T



FIG. 4: Reconstructed posterior probability distribution. The true values of u and ¢ are shown with blue lines. For
w=0.4 and o = 0.1, the recovered distribution had mean g = 0.39 and standard deviation & = 0.056. 100 walkers
sampled the distribution 1000 times.
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FIG. 5: A possible distribution for the individual masses in the population of binary neutron star systems.

To get an expression for p(M), we integrate over n:

0.25
p(M) = / p(ma (M, 1))p(ma(M, 7). (M, 7 ma, ma)dn (28)

where the limits of integration go from 0 to 0.25 because 7 is at a maximum when m; = mso, which translates into



a value of 0.25 for n. This integral cannot be done analytically, but by iterating the integral over many values of M,
ranging from 0 to 3 Mg and plotting the values we arrive at the distribution showcased in Fig. 6.

It is worth it to point out how the three peaks of the chirp mass distribution arise-the leftmost peak occurs by
combining the left peak of the individual mass distribution with itself in the chirp mass equation. Similarly, the
rightmost peak in the chirp mass occurs by combining the right peak of the individual mass distribution with itself.
Finally, the middle peak arises from a combination of the right and left peaks of the individual mass distribution.
The red lines in the figure represent the values of the chirp mass with the three combinations of p; and pe as inputs.
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FIG. 6: The chirp mass distribution calculated via a change of variable on individual masses drawn from two
bimodal Gaussian distributions.

The next step is to use the technique outlined in Sec. IT A in order to recreate this distribution. This time, we
generated samples from the 2-dimensional distribution in chirp mass and symmetric mass ratio and gave them random
standard deviations to simulate noise in the data. The samples we obtained are shown in Fig. 7. We then used emcee’s
sampler in order to recover the five parameters that govern the original 2-dimensional distribution (u1, p2, o1, 02,
and h). Because this distribution has multiple peaks and is not well-known, the sampler used previously could not
sample the function adequately. Thus, we used the Parallel Tempering sampler. This sampler initializes the walkers
at different “temperatures.” Each temperature of walkers explores an altered likelihood that allows them to explore
multi-modal distributions more easily. The results of this sampling are displayed in Fig. 8

There are several things to notice about these results. First of all, though the distributions of u1, ps, o1, and o9 are
doubly peaked, the higher peak is centered roughly at the true values. This means that if we were to obtain results
like this from a real set of detections, our “best guess” would be fairly accurate. Another feature to see is that the
distribution of i seems to be pushed up against the upper limit of our prior, which is unusual. Again, though, the
other peak of the distribution is centered roughly at the true value of h.

D. Toy Model: Selection Bias

The next piece of the puzzle was to implement the technique laid out in Sec. IIB. To estimate the parameters
of a population accounting for selection bias, we use the emcee module once again, this time altering our likelihood
with the added factors from Eq. 25. We consider a scenario in which we are trying to estimate the parameters of a
gaussian mass distribution, as well as the rate of actual signals, and we measure the signal-to-noise ratio given to us
by a detector. Below a threshold SNR, p¢,, the mass measurements and SNR are not recorded. We call detections
with SNRs greater than the threshold “triggers.” We assume that under the signal model, the SNR is drawn from a
non-central chi-squared distribution with a non-centrality parameter given by the optimal SNR [15]:

5 1Mpc>2 5 /1500 f'—7/3
ot — A c d 29
Povt ( Mg e foo Sh(f) d (29)
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FIG. 7: Samples drawn from the 2-dimensional original distribution

where Sy, (f) is the power-spectral noise distribution, shown in Fig. 9.
The necessary factors for the likelihood are given by:

drlr,] ax 9

3d 1
p(DJ7 [+|a,’H+) = /O ddLW(%}exp {_2 (p? + p?)pt(mj, dL))} X

(b —m1)? + (u— ma)®
1 202 : ) (30)

Io(y/75popt (i, i) X exp (—

where Iy is a modified Bessel function of the first kind. A derivation of this expression can be found in [17]. This
expression represents the probability that a trigger occurs given that there was an actual signal.

_ 1
p(DJ-,Iﬂa,’H )= MGXP(_P?Q) (31)

This represents the likelihood that a trigger occurs given that there was no real symbol.

B N Pin dp™* 3d2 1 )
p(I |a,H ) = /0 dz Agﬂ d'rn/\/0 ddLW exp (_2 I:.T +p0pt(m,dL):|> X

Iy (V& pope (m. 1)) x exp (~ (Hrm — ml);;;(ﬂm - m2)2) (32)

where = represents the unknown true SNR-squared which we marginalize out. This equation represents the proba-
bility that a trigger does not occur given that in fact there was a signal.

p(I " |a,H™) = /Opth exp (—x/2)dz (33)

Finally, this expression represents the probability that there was no trigger given that there was not a signal.

We assume a uniform distribution of binary neutron stars in volume out to a maximum distance of 600 Mpc.
We generate mass samples from a gaussian of mean 1.2Mg and standard deviation 0.1My, along with concurrently
drawing SNRs and luminosity distances. Of these events, we use a rate of 4.18 x 10~ "Mpc 3yr~! to assign the correct
number of these events to be signals. For each set of masses and distances, the drawn SNR tells us whether a trigger
was recorded by the detector. We can then use the appropriate masses in our likelihood and run emcee. The outcome
of this sampling is shown in Fig. 10.
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FIG. 8: This parameter estimation was calculated using 100 walkers at 20 different temperatures. The true
parameters for the original chirp mass distribution were p; = 1.246, o = 1.345, 01 = 0.008, 05 = 0.025, and
h = 0.293.

E. Full Chirp Mass Distribution Estimation

Finally, we are ready to put together all previous parts in order to create a technique that takes a set of data from
aLLIGO and runs it through a parameter estimation pipeline, taking into account selection bias effects. We start with a
set of mass measurements, each measurement its own distribution due to noise in the detector. We draw these samples
from a 2-dimensional distribution in chirp mass and symmetric mass ratio, just as we did in Section IIC. We then
use the same technique outlined in Section IID to estimate the five parameters of the original distribution, as well as
the rate of events. Again, we use the Parallel Tempering method, as our distribution is once again multi-modal.

Unfortunately, at this time there are a few technical problems in the code we developed by the end of the summer.
The complete program has been written up in Python—however, as it stands there are errors concerning array matching
due to the "noise” in the measurements. However, we have the full framework laid out for a full pipeline, enabling us
to do accurate parameter estimations on realistic populations of alLIGO sources.
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FIG. 9: The power spectral density noise curve for LIGO.

FIG. 10: This parameter estimation was done using 525600 total events, 90 signals, 63 false dismissals, and 27 false
triggers. We used 500 walkers with a burn-in period of 100 steps. For true values of u = 1.2Mg, 0 = 0.1Mg, and a
rate of R = 4.18 x 10~7 we recovered estimated values of ji = 1.2My, & = 0.14Mg, and R = 4.5 x 107

III. FUTURE WORK

This project provides numerous opportunities for future work. First of all, we would like to calculate the number
of events we would need to see in order to make accurate estimations of the population parameters. We would also
like to do a full 10-parameter estimation for not only chirp mass, but also symmetric mass ratio, sky location, and
the other parameters listed in section I. Ultimately, we would like to generate some simulated data and implement
the entire method from start to finish. Another important piece of future work is to compare the evidences, which
here we’ve ignored, in order to perform a Bayesian model comparison to select the most accurate model for the chirp
mass distribution. Finally, once aLIGO starts making detections we can use this method to do gravitational-wave
astronomy. The technique outlined here can be used to explore other population parameters, leading to greater
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knowledge about our universe.
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