
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1400570-v7 LIGO June 22, 2015

Real-time Code Generator (RCG)
Version 2.9.3 Release Notes

R. Bork, D. Barker, K. Thorne, J. Hanks

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology
LIGO Project

Massachusetts Institute of Technology
LIGO Project

LIGO Hanford Observatory

LIGO Livingston Observatory

http://www.ligo.caltech.edu/

LIGO LIGO-T1400570-v7

 2

1	
 Introduction .. 4	

2	
 Release History ... 4	

3	
 New Features ... 5	

3.1	
 Data Acquisition (DAQ) .. 5	

3.1.1	
 Support for EPICS UINT32 Data Types 5	

3.1.2	
 Support for assigning engineering units (EGU). 5	

3.2	
 Monitoring of Control Settings ... 7	

3.3	
 New Filter Module Switch Setting Readout EPICS Channel .. 7	

3.4	
 ADC and DAC Overflow Monitoring .. 7	

3.5	
 Inter-Process Communications (IPC) .. 9	

4	
 Bug Fixes ... 10	

4.1	
 RCG V2.9 .. 10	

4.2	
 RCG V2.9.1 ... 11	

4.3	
 RCG V2.9.2 ... 12	

4.4	
 RCG V2.9.3 ... 12	

5	
 Installation Instructions .. 13	

5.1	
 Get RCG 2.9 release ... 13	

5.1.1	
 Install RCG 2.9 software 13	

5.2	
 Update DAQ machines .. 13	

5.2.1	
 Set up new build area for DAQ 13	

5.2.2	
 Stop DAQ processes on NDS server for DAQ builds 13	

5.2.3	
 Rebuild GDS libraries for DAQ 14	

5.2.4	
 Build and install data concentrator executable (daqd) 14	

5.2.5	
 Build the data receiver executable (daqd) for frame-writer 14	

5.2.6	
 Stop frame-writing on frame-writer, install new daqd executable, restart 14	

5.2.7	
 Build the data receiver executable (daqd) for NDS servers 15	

5.2.8	
 Build the NDS executable (nds) for NDS 15	

5.2.9	
 Build the GDS broadcaster executable (daqd) 15	

5.2.10	
 Install, run new daqd,nds executables on NDS server 15	

5.2.11	
 Install, run new daqd executables on GDS broadcaster 16	

5.3	
 Build new dataviewer on workstations .. 16	

5.4	
 Set up new build area for front-ends ... 16	

5.5	
 Install updated drivers, scripts ... 17	

5.5.1	
 Rebuild GDS libraries, awgtpman for front-ends 17	

5.5.2	
 Update iniChk.pl script 17	

5.5.3	
 Install new scripts (fe_load_burt, grdfiltdecode.py) 17	

5.6	
 Update front-end boot scripts ... 17	

5.6.1	
 Copy in updated boot scripts 18	

LIGO LIGO-T1400570-v7

 3

5.6.2	
 Modify existing ‘rc.local’ script 18	

5.6.3	
 Test new boot scripts 19	

5.7	
 Build and install models .. 19	

5.7.1	
 Create safe.snap backup files for all models 19	

5.7.2	
 Clear out old IPC tables 19	

5.7.3	
 Rebuild all models 20	

5.7.4	
 Install all new models 20	

5.8	
 Restart all front-ends ... 20	

5.9	
 Recover front-end models with non-running real-time model 20	

LIGO LIGO-T1400570-v7

 4

1 Introduction
The purpose of this document is to:

- Describe RCG changes/enhancements as part of the upgrade from V2.8 to V2.9.
- Provide installation instructions for the new V2.9 release.

2 Release History
All code releases are found within the advLigoRTS area of the CDS SVN.

- branch-2.9: Initial release for testing only. (October, 2014)
- advLigoRTS-2.9 (January, 2015) – Release notes v4 and earlier apply
- advLigoRTS-2.9.1 (March, 2015) – Initial documentation version 5 of this document.
- advLigoRTS-2.9.2 (June, 2015) – RFM IPC sender timing option

LIGO LIGO-T1400570-v7

 5

3 New Features

3.1 Data Acquisition (DAQ)
With this version, support for UINT32 data types, both for fast and EPICS channels, is
incorporated. This includes a bug fix to the main data acquisition code (daqd) that now properly
tags the data as UINT32. A new part has also been added to the RCG MATLAB library to support
EPICS UINT32 data types.

3.1.1 Support for EPICS UINT32 Data Types
As shown below, a new part has been added to support acquisition and archival of EPICS channels
as UINT32 type. This would be used in a control model the same as the standard EPICS output
part, but now produces a UINT32 data type at the output and to the DAQ system. As with other
EPICS channels, these will be automatically recorded by the DAQ system at 16Hz.

Figure 1: EPICS UINT32 PART

3.1.2 Support for assigning engineering units (EGU).
The assignment of engineering units (EGU) to DAQ channels is also supported in this release.

3.1.2.1 Fast Channel EGU Assignment
Assignment of EGU for fast data channels is done by adding an alphanumeric string within the
DAQ channel part list. In the following example, the EGU of “Volts” is assigned to the channel
DAQ_FILTER_4_OUT. When parsing this list, the RCG takes any alphanumeric string after the
channel name to be the EGU for that channel. The exceptions are uint32 and int32, which the RCG
interprets to be the data type.

LIGO LIGO-T1400570-v7

 6

3.1.2.2 EPICS Channel EGU Assignment
The assignment of EGU to EPICS channels is done by adding the EGU field assignment to the
Description property of the EPICS part. To do this, select the part and then its Block Properties.
The window appears, as in the following example. To the Description, add field(EGU,”units”),
where units = desired EGU.

Figure 2: Example EGU assignment in Block Properties

LIGO LIGO-T1400570-v7

 7

3.2 Monitoring of Control Settings
The major change in V2.9 is the ability for the EPICS code, running on the Front End Computer
(FEC) to directly read in EPICS Back Up and Restore Tool (BURT) files and monitor the settings
for changes. This change was made primarily for two reasons:

1. Performance. For large control models, such as for ASC, BURT files could take in access
of 20 seconds to load using EPICS Channel Access (CA). By having the EPICS code,
generated by the RCG, directly read the file and using EPICS database access routines, the
time to read and load settings was reduced by as much as a factor of 100.

2. LIGO CDS contains on the order of 100,000 control settings, of which about 80% are set
once and not normally changed. However, if a setting is changed unexpectedly, for any
number of possible reasons, it would be very difficult, at best, to track it down. Therefore,
with the FEC now reading in the BURT file, it can also now monitor settings and report if
and when a setting has changed.

This new software is commonly referred to as the SDF (Setpoint Definition File) code, after the
new file format developed to apply reference settings. Complete details of SDF can now be found
in a separate document, RCG SDF Software LIGO-T1500115.

3.3 New Filter Module Switch Setting Readout EPICS Channel
Filter module switch settings are done via two EPICS records:

• FilterModuleName_SW1S
• FilterModuleName_SW2S

Interpretation of these settings is difficult, at best, for operators ie matching numbers to individual
switch settings. Therefore, in V2.9.1, a new, human readable, EPICS string variable has been added
for every filter module, namely:

• FilterModuleName_SWSTR
For every filter module switch that is ON, this string contains a one or two character representation,
with a comma (,) in between, as defined:

• IN = Input Switch
• OF = Offset Switch
• 1 thru 10 = Filter switch 1 thru 10
• LT = Limit Switch
• OT = Output Switch
• DC = Decimation Switch
• HD = Hold Output Switch

Some examples:

• Input, Output and Dec Switches ON, all others OFF, SWSTR = IN,OT,DC
• Input, F1, F2, Output and Dec Switches ON, all others OFF, SWSTR = IN,1,2,OT,DC

3.4 ADC and DAC Overflow Monitoring
In past releases, the monitoring of ADC/DAC channel overflows was via a single EPICS channel
for each ADC channel, IFO:FEC-DCUID_ADC_OVERFLOW_CARDNUM_CHANNUM, and

LIGO LIGO-T1400570-v7

 8

similarly a single EPICS channel for each DAC channel. There was a compile option where the
reporting could be set to either:

• Number of overflows detected per second, reset each second.
• Total number of overflows, reset on demand by the OVERFLOW_RESET.

In this version of code, both the overflows/second and total overflows are provided together, with
total overflows (IFO:FEC-DCUID_ADC_OVERFLOW_ACC_CARDNUM_CHANNUM) updated
continuously and available in the DAQ system at 16Hz. The auto generated ADC/DAC monitor
screens have also been updated to reflect these new channels, as shown below.

Figure 3 New ADC Monitor screen with Overflows

Figure 4 New DAC Monitor Screen with Overflows

LIGO LIGO-T1400570-v7

 9

3.5 Inter-Process Communications (IPC)
A special release, RCG V2.9.2, was made to address specific IPC errors between end and corner
station computers. The issue was that a specific control model could not consistently complete its
code cycle in time to reach the receiver in time for its next code cycle, due to the 20usec
transmission delay of the 4km fiber, thereby resulting in IPC errors being reported. In the case
being addressed, it was also not required, for control purposes, that the IPC being sent arrive in
time for the receiver next code cycle, but would be sufficient for it to arrive one receiver code cycle
later, or one cycle delayed.

To accommodate this, the RFM IPC sender code was modified with an option to properly
timestamp and queue a send IPC such that it would arrive and be properly tagged for use at the
receiver one cycle later than usual This option is invoked in the sender control model as an added
line to the Parameter block:

 rfm_delay = 1
Some implementation notes:

• This only works with RFM type IPC ie not PCIe network or shared memory IPC.
• When used, this definition applies to all RFM IPC sender parts in the model ie cannot be

invoked on a part by part basis.

LIGO LIGO-T1400570-v7

 10

4 Bug Fixes

4.1 RCG V2.9

Bugzilla
Number

Description Comments

505 Add warning bit to StateWord if coeff or DAQ
configuration files have changed and not yet loaded.

553 Bit2word part not correctly wiring channel 15 Fixed in RCG 2.8.4

556 Fix WFSPHASE part to allow DAQ to record user
settings.

563 Update IRIG-B driver to handle dates in 2014 Used at MIT

595 No compile errors for FilterControl2 parts with
unconnected inputs

Error now reported during
RCG compilation

596 cdsRampMuxMatrix: channels not-ideally named Fixed in RCG 2.8.3

597 cdsRampMuxMatrix: MEDM screens unwieldy Fixed in RCG 2.8.3

621 Runtime errors when ADC parts used incorrectly in
model

Error now reported during
RCG compilation

658 Fix oscillator ramping behavior when changing
frequencies

Fixed in RCG 2.8.3

660 Add daqd thread info to log For debugging

670 DACKILL reset button caches the reset request Fixed in RCG 2.8.4

662 Fix to PHASE part to allow DAQ to record user
settings

663 Load matrix button is intermittent Fixed in RCG 2.8.4

683 Mean trend data for integer data displays as 0 Fixed in RCG 2.8.6

689 Correct leap-seconds in spectracomGPS.c Corrected from MIT visit

690 Added framecpp location to NDS builds

701 Update front-end boot scripts Now same start/kill scripts
created by RCG 2.9

703 Compilation Errors if signal sources directly to
subsystem outputs

Fixed in RCG 2.8.6

722 Filter Mux Matrix MEDM in wrong directory Fixed in RCG 2.8.6

729 Fix to TRUE RMS part if input = 0.0

732 Set AUTOCAL of 18 bit DAC modules as default Fixed in RCG 2.8.7

LIGO LIGO-T1400570-v7

 11

751 Install script modified for start/kill scripts

756 Added monitoring of filter module DEC/HOLD switch
settings for DAQ

758 Load Ramp Mux Matrix issue Fixed in RCG 2.8.7

762 DAQ error bit value increased to max = 4MB/sec

772,773 SDF file save issues with initial branch-2.9 code

776 Intermittent operation of EXC parts Fixed in RCG 2.8.7

4.2 RCG V2.9.1

Bugzilla
Number

Description Comments

743/791 Increase ADC0 allowable wait

751 Modified install script.

759 Fix DAQ calculation of science frame 'Fast Chans' on
stand-alone

763 rampMuxMatrix fix to screen size and background
color for fractional settings

790 SDF Modifications See T1500115

792 Wait for RT startup to complete in start scripts

796 Add paging to SDF TABLE display See T1500115

799 Added a third output, STATE, to the DacKillIop part.

802 Changed SDF reporting records from string type to
waveform type to allow >40 character strings to be
reported to SDF MEDM screens.

803 Modified Makefile.linux to not add SDF EPICS
variables to the autoBurt.req file.

810 Code not properly resetting SW1S and SW2S for FMC
parts when in local mode. Operation of the FMC parts
was not affected by this bug, but caused issues with
SDF reporting.

811 NDS1 Version 12.2: Fix byte-ordering in 'status
channels 2'

LIGO LIGO-T1400570-v7

 12

4.3 RCG V2.9.2

Bugzilla
Number

Description Comments

 RFM IPC Sender option As described in section 3.5 of
this document.

4.4 RCG V2.9.3

Bugzilla
Number

Description Comments

850 Modifications to SDF Table

860 Modification to EPICS sequencer to pass filter module
ramp times to real-time code before offset/gain values.

LIGO LIGO-T1400570-v7

 13

5 Installation Instructions
The following describes the steps required to upgrade a system from V2.8 to V2.9 Real-Time Code
Generator (RCG) on the front-ends and DAQ.

5.1 Get RCG 2.9 release

5.1.1 Install RCG 2.9 software
Check out the tagged release from the repository and make it the default. (We use an ‘export’ from
Subversion so we only get the files and not hooks to check in updates)

1. Log in as 'controls' to the boot server (i.e. l1boot)
2. cd $RTCDSBASE/rtscore (this should take you to /opt/rtcds/rtscore - top-level checkout for

advLigoRTS)
3. svn co https://redoubt.ligo-wa.caltech.edu/svn/advLigoRTS/branches/branch-2.9
4. rm release (break link to old RCG)
5. ln -s branch-2.9 release (set link to new RCG)
6. Logout out of your session, and then log back in. This will make the new release the

default version.

5.2 Update DAQ machines
For RCG 2.9, we will be adding support to the DAQ for unsigned 32-bit integers (UINT32). It is
better to start the upgrade process with the DAQ and clients, and then work towards the front-ends.
This prevents changes to UINT32 handling on the front-ends from breaking the DAQ.

5.2.1 Set up new build area for DAQ
For ease of support, we will use a dedicated build area for DAQ software

1. log in as 'controls' on an NDS server (i.e. l1daqnds0)
2. cd $RTCDSROOT (this should take you to /opt/rtcds/<site>/<ifo>)
3. mkdir -p daqbuild
4. cd daqbuild
5. mkdir daq-2.9 (or similar)
6. cd daq-2.9
7. ${RCG_DIR}/configure - this will create Makefile, config.log, config.status files and

doc,src folders
8. cd .. (this puts you back at $RTCDSROOT/daqbuild)
9. rm current (breaks link to old build area)
10. ln -s daq-2.9 current (set link to new build area)

5.2.2 Stop DAQ processes on NDS server for DAQ builds
We will do the remaining DAQ builds on one of the DAQ machines. We usually choose an NDS
server (i.e. l1daqnds0) as it is easiest to take offline. To free up memory for the build, we need to
shut down the DAQ processes.

1. log in as 'controls' on an NDS server (i.e. l1daqnds0)

LIGO LIGO-T1400570-v7

 14

2. sudo /etc/init.d/monit stop (stop the monit process to keep from restarting daqd, nds)
3. sudo /etc/init.d/daqd_nds0 stop (stops daqd)
4. sudo /etc/init.d/nds_nds0 stop (stops nds)

5.2.3 Rebuild GDS libraries for DAQ
We need to rebuild the GDS libraries to support the DAQ builds. This is due to changes there to
support UINT32

1. log in as 'controls' on an NDS server (i.e. l1daqnds0)
2. rcgcode (should take you to /opt/rtcds/rtscore/release, which should be RCG 2.9 checout)
3. cd src/gds
4. make clean
5. make

5.2.4 Build and install data concentrator executable (daqd)
We need to stop existing one to speed the build

1. log in as 'controls' to data concentrator (i.e. l1daqdc0)
2. sudo /etc/init.d/monit stop (stop the monit process to keep from restarting daqd, nds)
3. sudo /etc/init.d/daqd_dc0 stop (stops daqd)
4. daqcode (Using an alias to get to /opt/rtcds/<site>/<ifo>/daqbuild/current)
5. make dc
6. cp -p build/dc/daqd ${RTCDSROOT}/target/l1daqdc0/bin_archive/daqd.rcg-2.9 (copies in

the new version)
7. target
8. cd l1daqdc0
9. cp -p daqd bin_archive/daqd.rcg-2.8.2 (to preserve the existing one)
10. cp -p bin_archive/daqd.rcg-2.9 daqd (to install new one as active copy)
11. sudo /etc/init.d/monit start

5.2.5 Build the data receiver executable (daqd) for frame-writer
We have a frame-writer specific build for daqd labeled 'fw'

1. log in as 'controls' on NDS server (i.e. l1daqnds0)
2. daqcode
3. make fw
4. cd build/fw
5. cp -p daqd ${RTCDSROOT}/target/l1daqfw0/bin_archive/daqd.rcg-2.9 (copies in the new

version)
6. cp -p daqd ${RTCDSROOT}/target/l1daqfw1/bin_archive/daqd.rcg-2.9 (copies in the new

version)

5.2.6 Stop frame-writing on frame-writer, install new daqd executable, restart
1. Log in to framewriter (i.e. l1daqfw0) as controls
2. sudo /etc/init.d/monit stop
3. sudo /etc/init.d/daqd_fw0 stop
4. target

LIGO LIGO-T1400570-v7

 15

5. cd l1daqfw0
6. cp -p daqd bin_archive/daqd.rcg-2.8.2
7. cp -p bin_archive/daqd.rcg-2.9 daqd
8. sudo /etc/init.d/monit start

5.2.7 Build the data receiver executable (daqd) for NDS servers
1. log in as 'controls' on NDS server
2. daqcode
3. make rcv
4. cd build/rcv
5. cp -p daqd ${RTCDSROOT}/target/l1daqnds0/bin_archive/daqd.rcg-2.9 (copies in the new

version)
6. cp -p daqd ${RTCDSROOT}/target/l1daqnds1/bin_archive/daqd.rcg-2.9 (copies in the new

version)

5.2.8 Build the NDS executable (nds) for NDS
1. daqcode
2. make nds
3. cd build/nds
4. cp -p nds ${RTCDSROOT}/target/l1daqnds0/bin_archive/nds.rcg-2.9 (copies in the new

version)
5. cp -p nds ${RTCDSROOT}/target/l1daqnds1/bin_archive/nds.rcg-2.9 (copies in the new

version)

5.2.9 Build the GDS broadcaster executable (daqd)
While still on the NDS server

1. daqcode
2. make bcst
3. cd build/bcst
4. cp -p daqd ${RTCDSROOT}/target/l1daqgds0/bin_archive/daqd.rcg-2.9 (copies in the new

version)

5.2.10 Install, run new daqd,nds executables on NDS server
1. Log in to NDS server (i.e. l1daqnds0) as controls
2. sudo /etc/init.d/monit stop
3. sudo /etc/init.d/daqd_nds0 stop
4. sudo /etc/init.d/nds_nds0 stop
5. target
6. cd l1daqnds0
7. cp -p daqd bin_archive/daqd.rcg-2.8.2
8. cp -p bin_archive/daqd.rcg-2.9 daqd
9. cp -p nds bin_archive/nds.rcg-2.8.2
10. cp -p bin_archive/nds.rcg-2.9 nds
11. sudo /etc/init.d/monit start

LIGO LIGO-T1400570-v7

 16

5.2.11 Install, run new daqd executables on GDS broadcaster
1. Log in to GDS broadcaster (i.e. l1daqgds0) as controls
2. sudo /etc/init.d/monit stop
3. sudo /etc/init.d/daqd_gds0 stop
4. target
5. cd l1daqgds0
6. cp -p daqd bin_archive/daqd.rcg-2.8.2
7. cp -p bin_archive/daqd.rcg-2.9 daqd
8. sudo /etc/init.d/monit start

5.3 Build new dataviewer on workstations
We need a new version of dataviewer that supports the UINT32 data type. The source code is
distributed as part of the RCG. We need to check out RCG 2.9 on a workstation, then build and
install it. We then change a soft-link to make it the default. Note that we need to rebuild stuff in
the ‘gds’ folder first

1. Log into a workstation
2. Navigate to a build directory. At LLO, I use /ligo/cds/projects/advLigoRTS
3. svn co https://redoubt.ligo-wa.caltech.edu/svn/advLigoRTS/branches/branch-2.9
4. cd branch-2.9
5. cd src/gds
6. make clean
7. make
8. cd ../dv
9. make clean
10. make
11. su controls (or whatever account has privileges to install in $APPSROOT)
12. make install
13. cd $APPSROOT
14. Check that a new dv-2.9.1 directory has been created
15. rm dv (remove old link)
16. ln -s dv-2.9 dv (set link to new RCG)

5.4 Set up new build area for front-ends
A new default front-end build area needs to be created and configured for the new RCG

1. Login to the boot server as 'controls'
2. cd $RTCDSROOT/rtbuild (this should take you to /opt/rtcds/<site>/<ifo>/rtbuild - top-level

build area)
3. mkdir rt-2.9 (or similar)
4. cd rt-2.9
5. ${RCG_DIR}/configure - this will create Makefile, config.log, config.status files and

doc,src folders
6. cd .. (this puts you back at $RTCDSROOT/rtbuild)
7. rm current (breaks link to old build area)
8. ln -s rt-2.9 current (set link to new build area)

LIGO LIGO-T1400570-v7

 17

5.5 Install updated drivers, scripts

5.5.1 Rebuild GDS libraries, awgtpman for front-ends
One should always rebuild awgtpman and the GDS libraries for RCG. Note this is done in the RCG
checkout area.

1. log in as 'controls' to the boot server
2. cd $RTCDSROOT/target (the alias 'target' may take you here)
3. cd gds/bin
4. cp -p awgtpman bin_archive/awgtpman.rcg-2.8.2 (to save the existing one)
5. rcgcode (should take you to /opt/rtcds/rtscore/release)
6. cd src/gds
7. make clean
8. make
9. cp awgtpman $RTCDSROOT/target/gds/bin/bin_archive/awgtpman.rcg-2.9 (copies in the

new version)
10. target
11. cd gds/bin
12. cp -p bin_archive/awgtpman.rcg-2.9 awgtpman (to install the new one)

5.5.2 Update iniChk.pl script
An updated iniChk.pl script needs to be moved to the scripts area. This script is used by the EPICS
sequencer to check the DAQ configuration files for correctness prior to passing information to the
real-time code.

1. Login to boot server as 'controls'
2. rcgcode (alias to get to ${RCG_DIR})
3. cd src/epics/util
4. cp iniChk.pl ${RTCDSROOT}/scripts

5.5.3 Install new scripts (fe_load_burt, grdfiltdecode.py)
To support the new SDF file MEDM interface, two scripts (fe_load_burt, grdfiltdecode.py) need to
be moved to the scripts area.

1. Login to boot server as 'controls'
2. rcgcode (alias to get to ${RCG_DIR})
3. cd src/epics/util
4. cp fe_load_burt ${RTCDSROOT}/scripts
5. cp grdfiltdecode.py ${RTCDSROOT}/scripts

5.6 Update front-end boot scripts
For RCG 2.9, the per-model start/stop scripts created in the RCG build process no longer match the
same sections in the original front-end boot sequence. We need to install new boot scripts for the
front-ends to use. The new scripts directly use the RCG-generated scripts, so they will no longer
diverge.

LIGO LIGO-T1400570-v7

 18

This change is compatible with earlier RCG releases. It removes awgtpman start/stop from monit,
so it is only done in the start/stop scripts, eliminating the potential for duplicate ‘awgtpman’
processes. It also moves front-end model EPICS startup until after the dolphin startup checks. This
should actually make full-system-restarts smoother.

5.6.1 Copy in updated boot scripts
1. Log into boot server as ‘controls’
2. Use ‘rcgcode’ to move to RCG 2.9 checkout area at ‘/opt/rtcds/rtscore/release’
3. cd src/feboot
4. sudo cp start_models.sh /diskless/root/etc
5. sudo cp kill_models.sh /diskless/root/etc
6. sudo cp monitrc /diskless/root/etc
7. sudo cp run_stdenv.sh /diskless/root/etc
8. sudo cp startWorld.sh /diskless/root/etc

5.6.2 Modify existing ‘rc.local’ script
This is the script that controls how the front-end boots. An updated one is provided in src/feboot.
However, it is set up to use the new Dolphin multiple-netmanager scheme (See LIGO-T1300518).
This is recommended for all sites with multiple Dolphin switches. However, if your site is not
configured that way, here are the changes to ‘rc.local.’

The existing code does front-end EPICS, Dolphin, front-end real-time, then awgtpman monit:
Start all configured control systems
/etc/start_epics.sh

Start OpenMX stream to DAQ
/etc/init.d/mx_stream start

Wait for Dolphin to initialize on all nodes (if present)
if /etc/dolphin_config.sh
then
 /etc/dolphin_wait
fi

Run front-ends
/etc/start_fes.sh

Run IOP awgtpman
/etc/init.d/awgtpman_iop start

Configure monit to use write-able area (/var/log)
mkdir -p /var/run/monit.d
touch /var/run/monit.d/empty
ln -snf /opt/monit/monit.$HOSTNAME.id /var/log/.monit.id

Generate awgtpman init.d scripts and monit rules for all configured slaves
/etc/gen_awgtpman_scripts.sh

Run service monitoring
/etc/init.d/monit start

We need to change this to use the new scripts, and remove awgtpman monit stuff

LIGO LIGO-T1400570-v7

 19

Wait for Dolphin to initialize on all nodes (if present)
if /etc/dolphin_config.sh
then
 /etc/dolphin_wait
fi

Start OpenMX stream to DAQ
/etc/init.d/mx_stream start

start front-end models
/etc/start_models.sh

Configure monit to use write-able area (/var/log)
mkdir -p /var/run/monit.d
touch /var/run/monit.d/empty
ln -snf /opt/monit/monit.$HOSTNAME.id /var/log/.monit.id

Run service monitoring
/etc/init.d/monit start

5.6.3 Test new boot scripts
Now we want to test that this works.

1. Log onto a non-critical front-end (such as a SUSAUX machine)
2. sudo shutdown –r now (to reboot the machine)

Now verify that the machine booted properly.

5.7 Build and install models

5.7.1 Create safe.snap backup files for all models
For RCG 2.9, all models will require a safe.snap file. So, before we get started, we should make
sure we have such a file for all front-end models, including IOP models.
Typical practice has been to store in the appropriate ‘burtfiles’ folder in the cds_user_apps
repository, with a soft-link in the model’s target directory. So we want to create such snapshot
files for any models that do not have them

1. Log into a workstation as ‘controls’
2. target (to go to the target folder /opt/rtcds/<site>/<ifo>/target)
3. ls –l <ifo>*/<ifo>*/burt/safe.snap
4. Examine the list to find any front-end models that are missing. Likely all the IOP models

are missing.
5. For each such missing file, create one using the ‘makeSafeBackup’ utility. For IOP models,

the ‘cds’ subsystem is chosen. For example, the LSC IOP model would be
 makeSafeBackup cds l1ioplsc0

5.7.2 Clear out old IPC tables
The existing IPC table should be cleared so we can start afresh as we will be rebuilding all models.
Replace ‘L1’ with the identifier of your IFO

3. Log into boot server as ‘controls’

LIGO LIGO-T1400570-v7

 20

4. cd $RTCDSROOT/chans/ipc
5. mv L1.ipc L1_<date>.ipc
6. touch L1.ipc

5.7.3 Rebuild all models
We will use the overall make command, but modifying our call the first time so that each build
works once. This will fill the IPC list file.

1. Logout and back into the boot server as controls (to reset paths, aliases)
2. Use ‘cdscode’ to move to build area
3. make -i World (run make ignoring errors)
4. Check for errors in *_error.log files (grep ERROR *_error.log). Correct issues with

ungrounded filter inputs, etc. in models
5. Inspect ipc file at ${RTCDSROOT}/chans/ipc/L1.ipc
6. cdscode
7. make World

5.7.4 Install all new models
1. cd to build area.
2. make installWorld

5.8 Restart all front-ends
Now we get to restart all the front-ends computers. This requires a full boot to get new kernels,
start-up scripts to complete build, but without ignoring errors. This can be done manually or not

1. Log in to boot server
2. /etc/reboot_all_fes.sh

The text of this script is similar to 'shutdown_all_fes.sh'
echo "rebooting all front-ends"

/etc/allrt.sh 'sudo /sbin/init 6'

Wait patiently

5.9 Recover front-end models with non-running real-time model
If any of the front-end models only start partially (i.e. EPICS portion running, real-time is BAD),
the likely cause is a bad/out-of-date safe.snap file. The best way to remedy this for each such
model is to

1. Examine the GDS_TP screen to determine the DCUID/FEC number for that model
2. Set the BURT_RESTORE flag to 1 for that model

caput <IFO>:FEC-<DCUID>_BURT_RESTORE 1

3. Create a new safe.snap file, using either the SDF_RESTORE screen or the command-line
utility makeSafeBackup <sub> <modelname>

4. Do as needed for all models on a front-end computer
5. Login to the front-end
6. sudo /etc/startWorld.sh (stops, then restarts all the models in the correct order)

