
LIGO SURF Final Paper:

Cutting Edge Computing for the Extraction of Astrophysical

Parameters from Gravitational-Wave Observations

Halston Lim∗1, Kent Blackburn�2, Vivien Raymond�2 and Rory Smith§2

1California Institute of Technology
2LIGO SURF Advisors, California Institute of Technology

Abstract

Detecting gravitational waves emitted by compact binary coalescences can provide important
astrophysical information about the progenitor through a process called parameter estimation.
Because parameter estimation, which involves finding theoretical waveforms and posterior prob-
ability distributions, is computationally expensive, we aim to expedite the process by optimizing
on Intel hardware on the Stampede computing cluster, by adapting Intel compatible compilers
and functions to improve performance. Our results indicate that the Intel hardware compatible
MKL FFT implementation runs an order of magnitude faster than the generic FFTW im-
plementation. Thus, given this improvement, we investigated optimizing the LSC Algorithms
Library parameter estimation code as it utilizes FFTs. By reducing the computational cost
of parameter estimation via optimization on hardware, longer gravitational wave signals can
be analyzed, with the potential of extracting more information about the progenitor. We also
compare the performance of the reduced order quadrature method for parameter estimation,
which reduced the total runtime by an order of magnitude compared to the regular quadrature
method.

1 Background

1.1 Gravitational Waves

The theory of General Relativity predicts that certain astrophysical objects will emit grav-
itational radiation, in addition to emitting electromagnetic (EM) radiation [1, 2]. Compact
binaries coalescences (CBCs), which consist of inspiraling neutron stars and/or black holes, are
included in this class of gravitational wave (GW) emitting objects. However, CBC GW sources
have only been indirectly detected - the first GW observation from compact binaries was made
over the period of several decades (1975-2005+) by measuring the orbital decay of a binary neu-
tron star (BNS), an effect due to energy loss via GW emission [3]. During the inspiral process

∗hblim@caltech.edu
�kent@ligo.caltech.edu
�vivien@caltech.edu
§smith r@ligo.caltech.edu

1



of a binary, the emitted GW signal can be detected with advanced ground-based interferom-
eters, which include the LIGO and Virgo detectors [4, 5, 6, 7]. The search for the predicted
GW waves from CBCs is ongoing and the upcoming network of GW interferometers (Advanced
LIGO, Advanced Virgo) anticipate the first direct observation of CBC GWs with an expected
BNS observation rate of 40 events per year, with lower and upper bounds of .4 and 400 events
per year, respectively [8].

The problem of determining source physics via GW signal is of great interest and has the
potential to provide an alternative to EM astronomy. If detected, a GW signal contains infor-
mation regarding the binary mass components, spins, location, and distance [9]. Learning more
about the mass distribution of such objects can hint at the formation mechanism of binary
systems and the nuclear equation of state governing such objects. The spins of binaries can
reveal, for instance, information about the common envelope stage or supernova processes. If
the location of the progenitor is able to be recovered by the GW signal, the source may be
identified with EM counterpart. Alternatively, an EM observation could trigger the detection
of a GW signal, given the location of the source. By using both GW and EM signals, the event’s
location can be better determined, which has great implications on the parameter estimation
of the binary [10, 11].

The gravitational waveforms used to model the source signal can only approximate its true
form, as exact solutions to Einstein’s equations don’t exist for such binary system. Waveforms
are characterized by several non-spin and spin parameters, as determined by the complexity of
the model. For example, we neglect eccentricity of the orbit because any source detected by
LIGO likely has a small eccentricity. Although black holes can be described by only a finite
number of parameters (charge, mass, spin), neutron stars must be approximated to avoid mod-
eling every individual neutron in the system. Compact binary models can be described with N
parameters, where N = 9 for the simplest non spin models:

� M = (m1m2)3/5
(m1+m2)1/5 - the chirp mass of the binary, where m1 and m2 are the masses of the

individual members of the binary (such that m1 >m2)

� η = m1m2

(m1+m2)2 - the symmetric mass ratio

� ι - the inclination angle, which is the angle between the orbital angular momentum vector
and the line of sight

� dL - the luminosity distance

� tc - the time of binary coalescence

� φc - the phase of the waveform at time tc.

� ψ - the polarization, which describes the rotation between the detector and source local
coordinates

� (α, δ) - the celestial coordinates of the source given by right ascension and declination

Spin parameters add an extra 6 parameters to describe the spin vectors [12], and precession
makes the inclination angle ι time-dependent.

Another simplification of the true waveform comes from using only a finite number of terms
from the post-Newtonian expansion of Einstein’s equations [12]. The relatively weak effect of

2



gravitational disturbances amidst detector noise makes the inference of such parameters quite
challenging. In order to study how GW signals are processed by the network of interferome-
ters, it is highly useful to utilize artifact signals, or injections [13]. An injection is a simulated
GW wave based on a waveform approximation that is inserted into the detector data either
through the hardware stage (simulated detector strain) or software stage (simulated into pro-
cessed data) of detection. Injections can provide information of the efficiency, background, and
other fundamental statistics of the analysis pipeline.

1.2 Parameter Estimation and Bayes’ Theorem

After the injection is incorporated into the detector data (with either real or simulated noise),
every segment that contained an injection is analyzed using the LALInference pipeline, software
part of the LSC Algorithm Library, in order to generate the posterior probability distributions
(PDFs) for each parameter in θ⃗ for given waveform H [14]. The speed of this process has
been improved greatly with more efficient computational methods, for instance, Reduced Order
Modeling [15, 16]. The Reduced Order Quadrature (ROQ) MCMC used in this method has a
reported speed up by a factor of 30.

The PDFs are calculated using Bayes’ Theorem, which finds the probability that the injec-
tion value is θ⃗ for a given model H,

p(θ⃗∣H,{d}) = p(θ⃗∣H)p({d}∣θ⃗,H)
p({d}∣H) . (1)

Here p(θ⃗∣H,{d}), the PDF, is the probability that the injection value is θ⃗ given the data {d} and
model H; p(θ⃗∣H) is the prior distribution, which is the probability of ⃗theta before any obser-
vations and depends on assumptions regarding the source. The likelihood function p({d}∣θ⃗,H)
determines the probability of observing the data given a model H and parameter values θ⃗. This
is just the probability that the residuals, after subtracting the model, are pure Gaussian noise.

While it is extremely computationally expensive to use Bayes’ Theorem to calculate every PDF
manually for each value of each parameter, statistical methods are used to approximate the
true underlying distribution. In order to find the PDF for a given parameter, we stochastically
sample various values for the parameter and bin the values into a histogram. To sample the
distributions more effectively, we implement the Markov Chain Monte Carlo method (MCMC),
which has been proven to converge to the true distribution quickly as the number of samples
increases [17].

1.3 Computational Aspects

In 2012, Intel began to design multiprocessor units with a new computer architecture, called the
Many Integrated Core Architecture, or MIC (pronounced Mike) [18] . These processors, known
as Xeon Phi, have the capability of combining the processing power of many CPUs into one
chip. The MIC architecture is especially efficient at parallel processing in a computer cluster
environment, and have the ability to greatly exceed current computational limits. Parameter
estimation of CBCs is an example of a computationally demanding task that is well suited for
parallel computing.

The implementation of MIC processors has already begun. The LIGO Laboratory at the Cal-
ifornia Institute of Technology currently utilizes the MIC architecture on several clusters. A

3



much larger scale implementation has been adopted by computing resources managed by the
NSF funded Extreme Science and Engineering Discovery Environment (XSEDE) [19]. One of
its most powerful computational resources, the Stampede computer cluster, is operated under
XSEDE and utilizes a large scale implementation of the Xeon Phi processors (61 cores) [20].

Current computational limits prevent excessive sampling of the parameter space when gen-
erating GW waveforms, even when excluding spin effects. Thus, our current ability to answer
astrophysical questions relating population distributions greatly relies on intelligent sampling of
the parameter space. However, by modifying the post-processing pipeline to take advantage of
more efficient architectures, like that of Stampede, more complex waveforms could be calculated
which would increase the breadth and content of current studies. We also aim to quantify the
efficiency advantage of MIC clusters over current computational limits.

2 Methods

In optimizing the GW parameter estimation code, we first investigated the theoretical improve-
ments in speed by creating a simple benchmark program. Specifically, the program calculated
the forward FFT of the box function for a given number of points in the time series (we tested
only with 2N points) (figure 1). Although the FFT algorithm is only part of the parameter esti-
mation calculation, it can be used as an indicator of the relative speed improvements expected.
The wall clock times of the FFT algorithm were measured.

Using this benchmark program, quantitative comparisons between the CPU run times of the
XLAL (Ligo Algorithms Library) and MKL (Intel Math Kernel Library) FFT implementations
were made, and took into account several factors, including:

� Using the Intel Math Kernel Library (MKL) (directly or with a wrapper to call from
XLAL functions) vs. XLAL (LIGO Algorithm Library)

� Intel compiler vs. generic GNU compiler

� Running jobs in the login node vs. submitting to cluster via SLURM

� Using MICs vs. no MICs

� Standard threaded vs. sequential version of MKL

After determining the theoretical speed up with the FFT alone, we proceeded to test the
actual parameter estimation code. The parameter estimation utilized simulated data in the
Advanced LIGO-Virgo detectors and analyzed 50 injected BNS singles uniformly oriented with
fixed component masses of 1.4M⊙ with SNR from 5 to 20. Taylor F2 3.5 PN (no spin model) was
used to fit the waveforms. For each implementation of the parameter estimation code (i.e. the
factors listed above) the LIGO Algorithms Library was rebuilt accordingly. As each parameter
estimation build each analyzed the same 50 injections, the runtime distribution between builds
were compared.

Finally, the reduced order quadrature method was compared to the normal quadrature method
by comparing the runtimes of the parameter estimation described above.

4



Figure 1: The fast Fourier transform algorithm in the Intel Math Kernel Library implemented
on the box function and returned its Fourier transform pair, the distinctive sinc function in
the frequency domain (top). The performance of the XLAL and MKL FFT algorithms without
MIC implementation as function of number of points.

3 Results

We compared the wall clock time of calculating the forward FFT of the box function, shown
in figure 2. Each series describes one implementation of the FFT, compiled with with either
the Intel Compiler (icc) or the generic GNU compiler (gcc) used with either XLAL or MKL. In
addition, MKL supports a parallel and sequential options, where MKL parallel uses threaded
libraries and MKL sequential uses non-threaded libraries. It can be seen that all of the imple-
mentations (except the parallel MKL, mic offloaded) had runtimes that approximately scaled
according to n log(n). This agrees with the theoretical scalability curve of FFTs [21].

Also, very basic MIC offloading was implemented. While the MIC implementation proved
to be by far the most scalable, the overhead to simultaneously utilize the Xeon Phi proces-
sors proved significant. However, an application in which there are opportunities to compute in
parallel (and not just the FFT itself) can be expected to outperform non-MIC implementations.

MKL outperformed XLAL by an order of magnitude for all N . The MKL utilizes its own
discrete fourier transform function, while XLAL utilizes the FFTW implementation. Lastly,
when XLAL was built with the FFT linked to the MKL libraries, a speed up was also seen. At
low N , the inefficiencies in the MKL wrapper mask the speed up in the FFT.

The parameter estimation code was conducted on 50 injected BNS events to get a distribu-
tion of runtimes. In figure 3 shows the comparison between 1) the Intel compiled and GNU
compiled parameter estimation on the Stampede compute cluster and 2) parameter estimation
run on Stampede vs. CIT computer clusters. MIC offload and MKL implementations of the
parameter estimation code were not tested, due to time limitations. Different compilers had
little impact, which is an agreement with the FFT results. However, between the Stampede
and CIT compute nodes, a drastic different was seen. The Stampede system allows a user to
continuously utilize a node for a certain time limit (usually 2 days). This contrasts with the

5



Figure 2: The CPU run time of XLAL and MKL with the Intel and GNU compilers on the
compute node. While the MKL functions are still an order of magnitude faster than the XLAL
functions, the compute node speeds up all processes by about a factor of 5. Also, XLAL
supports a wrapper to call MKL functions (which is shown in dark, undotted blue) and has a
speed increase over generic XLAL. The MIC offload runtime with parallel mode MKL is the
most scalable but memory overhead dominates until N = 107. MIC offload with sequential mode
provided the fastest results.

CIT system, where a user is allowed infinite time, but not guaranteed continuous node usage.
In addition to faster processors, this would explain the large discrepancy.

Figure 3: The parameter estimation normalized runtime distribution for 50 injected BNS events.
On the left is the comparison between runtimes of CIT and Stampede and on the right is
the comparison between Intel and GNU compilers. The (mean, standard deviation, median)
for Stampede (icc) was (6680,13260,3702) seconds; for Stampede (gcc) was (4190,2040,3500)
seconds; for CIT (gcc), for events that took less than 105 seconds was (17600,17800,9730)
seconds.

6



The reduced order quadrature method was tested against the regular quadrature method
in a similar fashion. Figure 4 shows the normalized histograms of runtimes on the CIT and
Stampede compute nodes. An order of magnitude speed up was seen on both Stampede, and
two orders of magnitude speed up was seen on the Caltech cluster.

Figure 4: The parameter estimation normalized runtime distribution for 50 injected BNS events.
On the left is the comparison between runtimes of CIT non roq and Stampede roq and on the
right is the comparison between the Stampede non roq and roq runtimes. The (mean, standard
deviation, median) for Stampede (non roq) was (4190,2040,3500) seconds; for Stampede (roq)
was (330,449,218) seconds; for CIT (non roq), for events that took less than 105 seconds was
(17600,17800,9730) seconds.

4 Conclusion

Current analyses involving calculating gravitational waveforms can be limited by both the an-
alytical approximations and computational cost. In this project we studied how the parameter
estimation code used in the LIGO analysis pipeline can be optimized.

With the FFT algorithm benchmarking results, we investigated optimization of the lalinfer-
ence mcmc parameter estimation application. The FFT results generated provided information
of the relative speed ups expected with the parameter estimation code. As there was no speed
up in FFT algorithm in switching compilers, there was similarly no speed up in the parameter
estimation code. Because the MKL FFT was an order of magnitude faster than the XLAL FFT,
we expect the MKL linked parameter estimation code to be faster (in accordance to FFT re-
sults). However, data wasn’t collected due to time limitations. The parameter estimation code
ran an order of magnitude faster on the Stampede compute node compared with the CIT com-
pute node, demonstrating the impact of faster processors and different job schedulers. Lastly we
tested the reduced order quadrature method and found drastic speed ups - order of magnitude
faster than the Stampede non reduced order quadrature, and two orders of magnitude faster
than the CIT non reduced order quadrature method.

One application of optimizing the parameter estimation code is that it might justify lower-
ing the threshold frequency at which signals are detected. While the computational cost of
lower the threshold detection frequency from 40 Hz to 20 Hz is high, the additional information

7



gained from having a longer signal may help improve parameter estimations (reduce Bayesian
uncertainties). The amount by which the computational cost is reduced will can be explored by
comparing the lalinference mcmc code results from injection with 40 Hz versus 20 Hz threshold
frequency. This remains to be done for future work.

In conclusion, our results provide insight into more optimal approaches to take for computational
demanding algorithms like the discrete Fourier transform and GW parameter estimation.

References

[1] A. Einstein, Preuss. Akad. Wiss. Berlin pp. 154-167 (1918).

[2] P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).

[3] R. A. Hulse and J. H. Taylor, Astrophys. J. 253, L51 (1975)

[4] G. M. Harry and the LIGO Scientific Collaboration Class. Quantum Grav. 27, 084006
(2010), URL http://iopscience.iop.org/0264-9381/27/8/084006/

[5] The LSC-Virgo Collaboration (In preparation), LIGO P1200087.

[6] Advanced Virgo Baseline Design (2009), URL https://pub3.ego-
gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf.

[7] J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C. Rodriguez, M. van der Sluys and
V. Kalogera et al., Phys. Rev. D 85, 104045 (2012) arXiv:1201.1195.

[8] J. Abadie et al. [LIGO Scientific and Virgo Collaborations], Class. Quant. Grav. 27, 173001
(2010) arXiv:1003.2480.

[9] J. Aasi et al. [LIGO and Virgo Collaborations], Phys. Rev. D 88, 062001 (2013),
arXiv:1304.1775.

[10] J. S. Bloom et al. (2009), 0902.1527.

[11] H. B. Lim and V. Raymond. (2014). Improving gravitational-wave astronomy with electro-
magnetic observations of binary neutron stars. In preparation.

[12] J. D. E. Creighton and W. G. Anderson, Gravitational-Wave Physics and Astronomy
(Wiley-VCH, Weinheim)

[13] (2011), LIGO Scientific Collaboration and Virgo Collaboration, The LIGO /
Virgo Blind Injection GW100916 (2011), http://www.ligo.org/science/GW100916/,
http://www.ligo.org/news/blind-injection.php.

[14] LSC Algorithm Library, URL http://www.lsc-group.phys.uwm.edu/lal.

[15] P. Canizares, S. E. Field, J. R. Gair and M. Tiglio, Phys. Rev. D 87, no. 12, 124005 (2013)
1304.0462.

[16] P. Canizares, S. E. Field, J. Gair, V. Raymond, R. Smith and M. Tiglio, 1404.6284.

[17] M. van der Sluys, V. Raymond, I. Mandel, C. Rover, N. Christensen, V. Kalogera, R. Meyer
and A. Vecchio, Class. Quant. Grav. 25, 184011 (2008) arXiv:0805.1689.

8



[18] Xeon Phi Product Family URL http://www.intel.com/content/www/us/en/processors/xeon/xeon-
phi-detail.html

[19] Extreme Science and Engineering Discovery Environment URL https://www.xsede.org/

[20] Texas Advanced Computing Center Stampede URL https://www.tacc.utexas.edu/stampede/

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes (Cam-
bridge University Press)

9


	Background
	Gravitational Waves
	Parameter Estimation and Bayes' Theorem
	Computational Aspects

	Methods
	Results
	Conclusion

