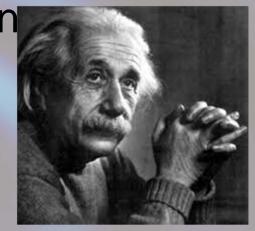
LIGO and Gravitational Wave Detection Workshop

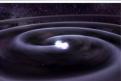
Gregory Harry

American University

National Society of Black Physicists
February 28, 2015


Outline of Workshop

- Technical Overview of LIGO
 - Gravitational Waves
 - Gravitational Wave Detectors
 - Astronomical Sources for LIGO
 - Advanced LIGO Detectors
- Break for Informal Discussions
- Involvement with LIGO and Outreach
 - Joining LIGO
 - Open Data and Joint Data Analysis
 - Programs for Teachers and Students


Gravitational Waves

- Gravitational waves are a prediction of Einstein's theory of gravity
- Similar to electromagnetic waves (light) from Maxwell's equations

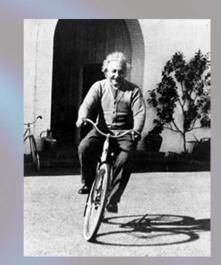
- Two major differences
- Spin two (tensor) shape
- Much smaller amplitude

- Strain $\frac{\Delta L}{L} \cong 10^{-22}$
- Kilometer baseline,
 subnuclear length changes

General Relativity turns 100; Gravitational Waves turn 99

General Relativity: Einstein Field Equations

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$


The metric: distance in space-time

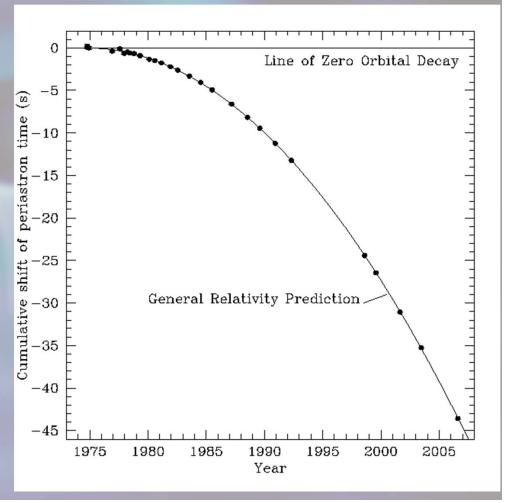
$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Weak field approximation: space-time is slightly perturbed from flat space-t

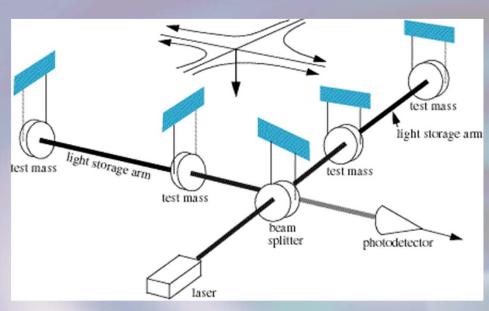
Simple wave equation for the metric perturbation $h_{\mu\nu}$

A. Einstein, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Berlin,1916), 688696; Sitzungsberichte der Kniglich Preussischen Akademie der Wissenschaften (Berlin, 1918), 154167.

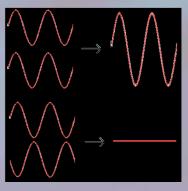

Slide from D. Reitze G1500139

Indirect Evidence for GW

Known binary neutron star binaries will merge


within 100 million years

- Hulse and Taylor observation
 - Change in orbit of neutron star binary
- Orbital period decreases
- Deviation grows as predicted by Einstein
- 1993 Nobel Prize to Taylor and Hulse


Direct Detection


Interferometers

- Light goes down two perpendicular arms
 - Similar to Michelson-Morley
- Mirrors are free to move
 - Suspended as pendulums
 - Isolated from seismic noise

- Returning light recombines
 - Constructively: equal arm length
 - Destructively: different arm lengths
- Gravitational wave
 - Stretch one arm, shrink other

Interference of Light

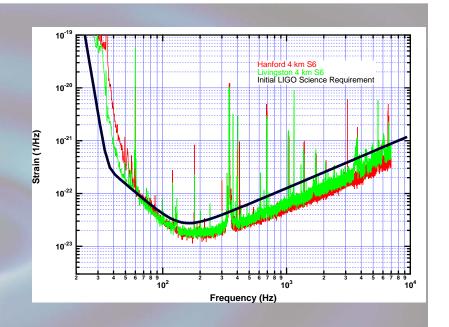
LIGO Detectors

- US has two sites
 - Livingston, Louisiana (LLO) and Hanford, Washington (LHO)
- 4 kilometer-long beam tubes
 - Entire 8 km length in vacuum
 - Low seismic noise environment

Sensitive to strains

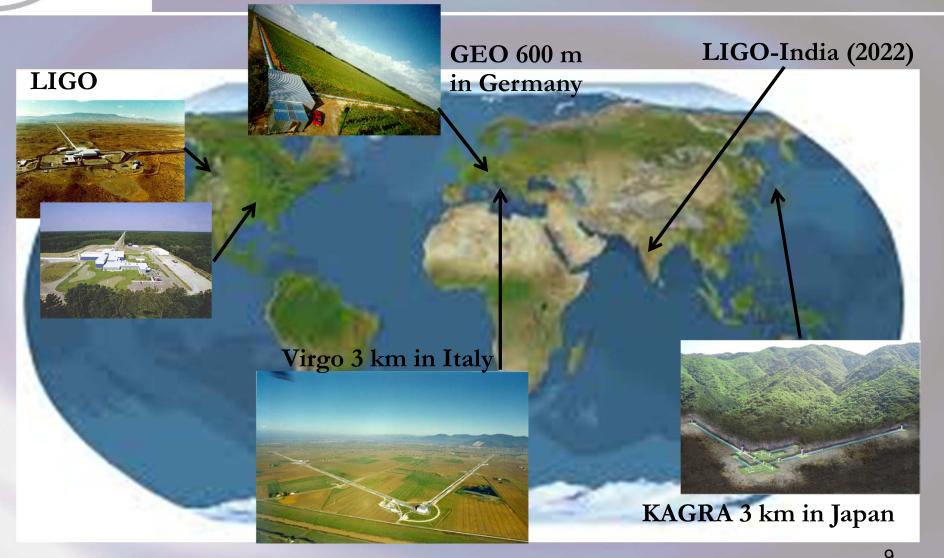
$$h \approx 10^{-21}$$

 $\Delta L = hL \approx 10^{-18} \text{ m}$


Subnuclear scale

Initial LIGO 2002-10

- More than full year of coincident data
- Bandwidth 40 3000 Hz
- Exceeded sensitivity goal

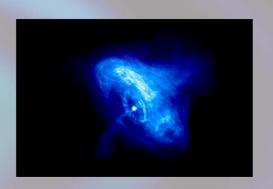

$$\frac{\Delta L}{L} = 2 \times 10^{-22}$$

- 3 detectors, 2×4 km/1×2 km
- 20 W Nd:YAG laser
- 10 kg silica optics
- Steel wire suspensions

LIGO World Network of Detectors

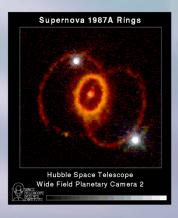
LIGO Gravitational Wave Sources

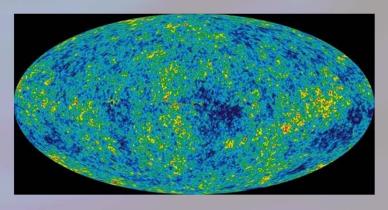

Short Duration


Long Duration

Modeled

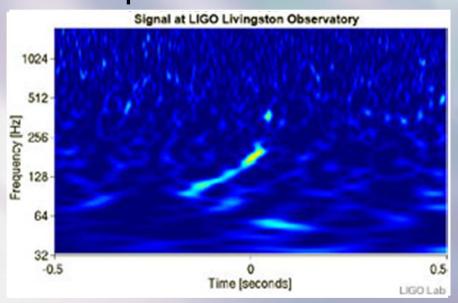
Compact Body Inspirals

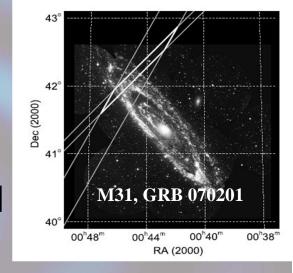

Periodic Sources



Unmodeled

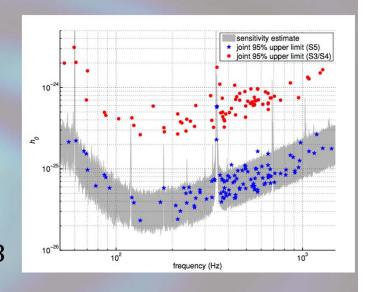
Bursts

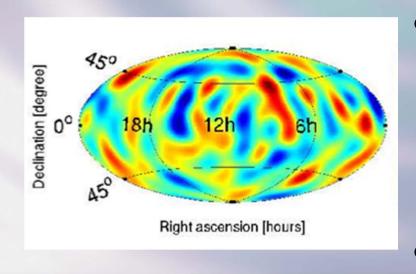

Stochastic Background



Initial LIGO Astrophysics: Burst and Inspiral Sources

- Gama ray bursts (GRBs) may be compact body inspirals
- Short GRBs 050311 and 070201
 - Locations in galaxies M81 and M31
 - Inspiral excluded at >98%





- GW100916
 - Consistent with compact body inspiral
 - Blind injection done to test analysis process

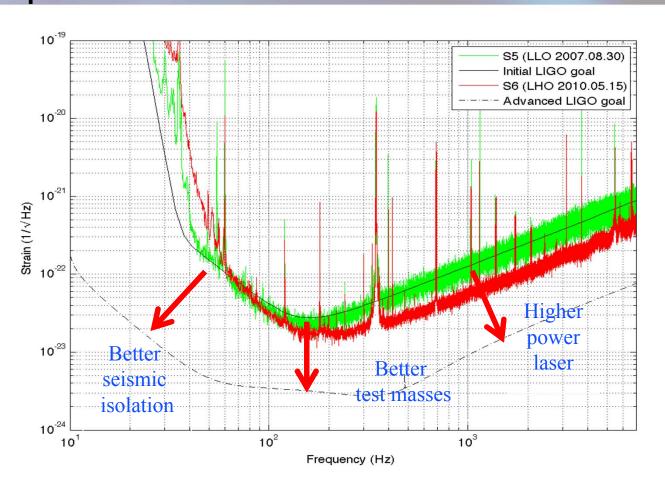
Initial LIGO Astrophysics: Pulsars and Stochastic

- Pulsars can give continuous
 GW from asymmetric rotation
- Crab pulsar $E_{GW} < 0.02 E_{total}$
- Ellipticity limit in 116 pulsars
 - Lowest upper limit $\epsilon < 7 \times 10^{-8}$

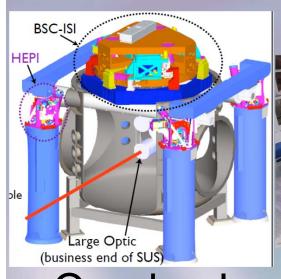
- Stochastic GW from primordial background
- $\Omega_0 < 6.9 \times 10^{-6}$
 - Nucleosynthesis limit 10⁻⁵
- Limits on point sources

Advanced LIGO

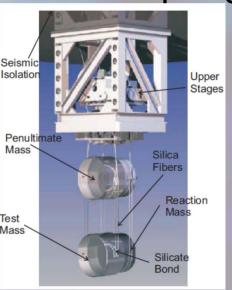
- Goal: 10 X sensitivity
 - 1000 X rate
 - 10 5000 Hz, wider range
 - 200 Mpc NS inspiral range
 - Inspirals possible ~ 1/month
 - One day with Advanced LIGO = a few years with initial LIGO

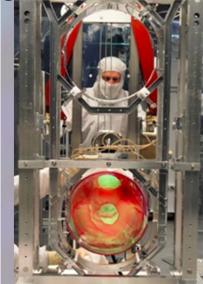


- Construction project complete
 - Budget began in 2008
 - Installation started 2010
 - Building three interferometers
 - Installation finished Feb 2015

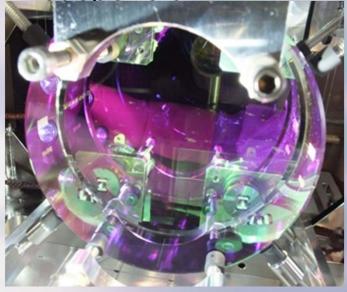

Advanced LIGO Sensitivity

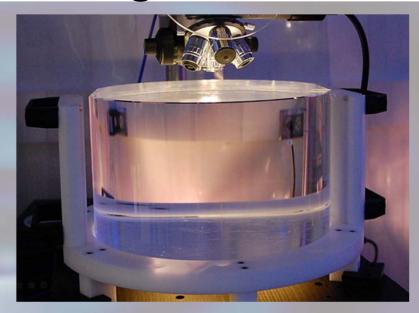
Limited by Earth motion, thermodynamics, and quantum mechanics




Advanced LIGO Seismic Isolation and Suspension

- Seismic isolation
 - Hydraulic preisolator external to vacuum
 - In vacuum, two stage,6 DOF activemass/spring system
- Quadruple suspension
 - Based on GEO600 triples
 - Seismic noise reduction $^{1}/_{f^{8}}$ above pendulum f
 - Final stage silica fibers to reduce thermal noise



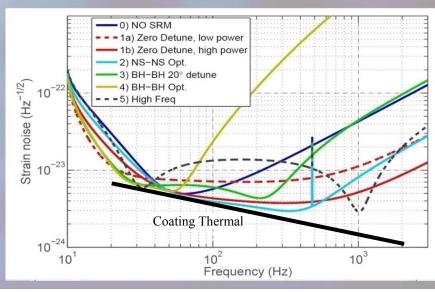


Advanced LIGO Mirrors and Coatings

- Fused silica optics
 - 40 kilograms
 - Very low absorption
 - < 0.2 nm rms polish</p>
 - Monolithic connection to suspension

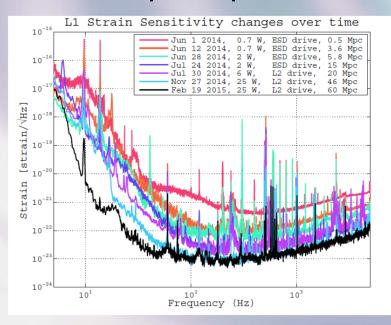
- Optical coatings
 - 34 centimeter diameter
 - 5-6 cm beam spot
 - Very low absorption
 - Titania-doped tantala for low thermal noise

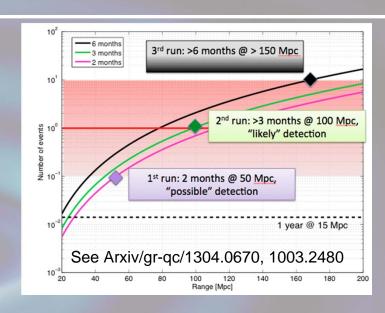
Advanced LIGO Laser and Interferometry



Laser

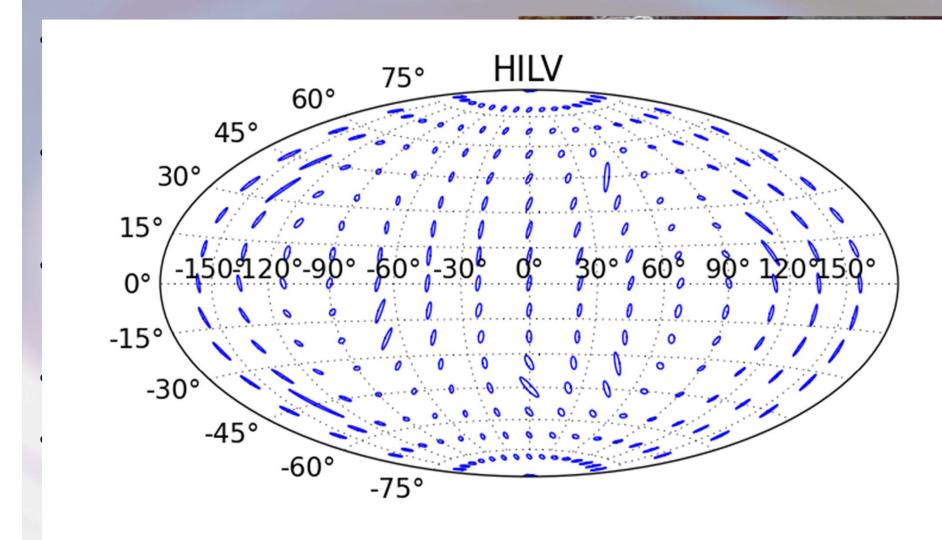
- Nd:YAG 1064 nm
- Three stage NPRO
- 180 Watts
- Shot noise limited


Interferometry


- Power recycling increases arm power to 800 kW
- Signal recycling to tune sensitivity curve

Status and Science Plans

- Installation complete
- Remaining activities
 - Noise reduction at both LLO and LHO
 - Computer procurement



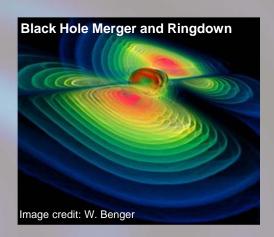
Goal: Direct detection century after Einstein's 1916 GW paper

Date	Length	Sensitivity
Summer 2015	3 months	40-80 Mpc
2016/2017	6 months	80-120 Mpc
2017/2018	9 months	120-170 Mpc
2019	Full year	200 Mpc

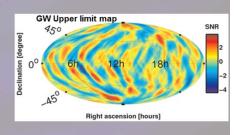
LIGO India

Gravitational Wave Sources for Advanced LIGO

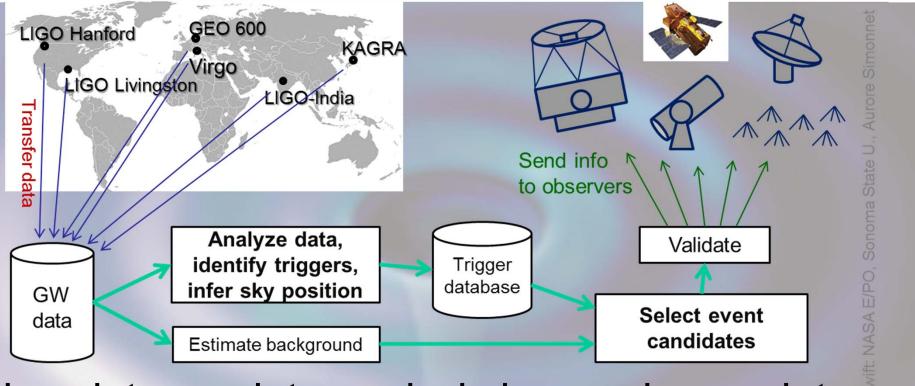
- Compact body coalescence
 - Neutron stars and black holes
 - Inspiral, merger, and ringdown phases
- Stellar core collapse
- Gamma ray bursts
 - Kilonova
- Millisecond pulsars
 - Known and unknown
- Stochastic background
 - Cacophony of above sources
 - Cosmological origin (?)


Physics and Astronomy with Advanced LIGO

Fundamental Physics


- Is General Relativity the correct theory of gravity?
- How does matter behave under extreme conditions?
- What equation of state describes a neutron star?
- Are black holes truly bald?

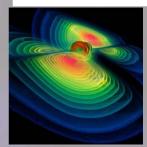
Astrophysics, Astronomy, Cosmology


- Do compact binary mergers cause GRBs?
- What is the supernova mechanism in core-collapse of stars?
- How many low mass black holes are there in the universe?
- Do intermediate mass black holes exist?
- How bumpy are neutron stars?
- Is there a primordial gravitational-wave residue?
- Can we observe populations of weak gravitational wave sources?
- Can binary inspirals be used as "standard sirens" to measure the local Hubble parameter?

Multimessenger Astronomy

- Low latency data analysis happening as data comes in → Generate triggers
- Increase confidence in GW detection
- More precise sky location, better understanding

LIGO in the Audience


- Gregory Harry Faculty, American University
 - LIGO hardware, optics, thermal noise
- Jedidah Isler Faculty, Syracuse University
 - Astrophysics
- Jaysin Lord Grad student, Syracuse University
 - Neutron star and black hole searches
- Amber Lenon Grad student, Syracuse
 - Gravitational wave astrophysics
- Corey Gray Operator, LIGO Hanford Observatory
 - LIGO interferometer status and operation
- Martha Casquette Faculty, Texas Southmost College
 - LIGO outreach

Research with LIGO and Outreach

- LIGO Scientific Collaboration
- Open data and joint analysis
- LIGO programs for teachers
 - Community college
 - High school teacher training
- Programs for students
- Outreach to the general public
- LIGO online

LIGO Scientific Collaboration

- Nearly 1000 members from over 80 institutions in 16 countries for the LIGO Scientific Collaboration (LSC)
- Large and small departments, graduate and undergraduate institutions, academic and research laboratories
 - Several members serving under-represented groups
 - Southern University, a Historically Black University
- Most US groups supported by single investigator NSF grants
 - LIGO Laboratory (Caltech, MIT, Observatories) supported by MRFC from NSF

Collaboration

- LSC and LIGO Laboratory make up "LIGO"
 - Mission "The LIGO Scientific Collaboration (LSC) is a self-governing collaboration seeking to detect gravitational waves, use them to explore the fundamental physics of gravity, and develop gravitational wave observations as a tool of astronomical discovery"

LSC Organization

- Working groups organize LIGO activities
 - Hardware groups: Suspensions and Seismic Isolation,
 Optics, Quantum Noise, Advanced Interferometer
 Configurations, Detector Characterization
 - Data analysis groups: Bursts, Compact body coalescence, Continuous waves, Stochastic
- Other groups and committees
 - Education and public outreach, Diversity, Academic advisory, Joint running (with Virgo), Software
- LIGO Collaboration Meetings
 - Joint meetings with Virgo
 - Currently twice yearly; Caltech March 2015

Joining the LSC

- Anyone willing and able to contribute to LIGO's mission may apply for membership
 - Contributions to one or more of analysis of LIGO data, operation and characterization of current detectors, and development of future detectors
 - Contact LIGO Spokesperson Gabriela Gonzalez (gonzalez@lsu.edu)
- Must be approved by 2/3 vote of current members
- Sign a Memorandum of Understanding with LIGO
 - Evaluated by working groups and resigned annually
- LIGO Beginner's Guide available at
 - dcc.ligo.org/public/0112/P1400033/005/FinalDocumentAug2014%289%29.pdf

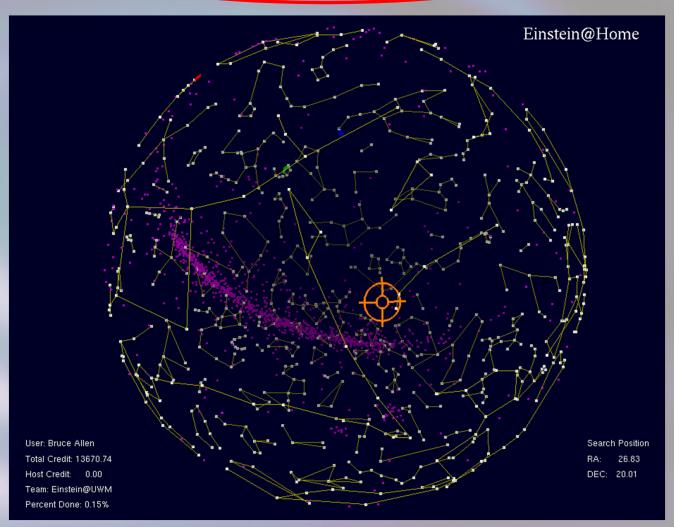
LIGO Diversity Initiatives

- As members of the LIGO Scientific Collaboration, we recognize the importance of diversity to enrich our research and scholarship.
- dcc.ligo.org/public/0107/M1300484/001/LSC-diversity-statement.pdf
- As international collaboration, focus on gender issues over race or ethnicity
- Sponsor Undergraduate Research Fellowships for underrepresented minorities
- With NSBP Carl Albert Rouse Fellowship
- With National Society of Hispanic Physicists Victor M. Blanco Fellowship

LIGO Joint Analysis with Astronomers

- LIGO has Memorandum of Understanding with astronomers to do multimessenger astronomy
- High Energy Neutrinos: ANTARES and IceCube
 - Short GRBs, SGRs
- Low Energy Neutrinos: Super-K, LVD, Borexino
 - Core collapse supernova
- Gamma Rays: SWIFT
 - Short GRBs, galactic supernova
 - Low latency
- Optical and IR: ROTSE a,b,c,d; TAROT N,S SkyMapper, QUEST, PTF/ZTF, Pi of the Sky, Zadko, Quest, DECam, BlackGEM
 - GRB afterglows, galactic supernova
- Radio: LOFAR, ETA, NRAO Green Bank, ARECIBO
 - BNS mergers, GRB radio afterglows, pulsar glitches

LIGO Open Data


- LIGO data available online to anyone interested: losc.ligo.org/about
 - Also documentation, tutorials, and tools
 - losc.ligo.org/tutorials/
- Most recent data from 2005-2007 S5
- Will release 2009-2010 S6
- Used for student projects and outreach as well losc.ligo.org/projects/

Einstein @ Home

http://einstein.phys.uwm.edu/

- Based on SETI@Home
- Searching for unknown pulsars
- Operating systems:
 - Windows
 - Mac
 - OSX
 - Linux
- More computing power
- Low cost

LIGO Community College Teachers

- Two-unit online courses for community college teachers about LIGO science and technology
 - LIGO Science course starts July 2015
- Coming soon, March 16, 2015
 epo.sonoma.edu/projects/ligo/

Secondary School Teachers

- LIGO Livingston observatory in Louisiana partners with regional organizations to provide teacher training www.ligo-la.caltech.edu/SEC.html
- LIGO Hanford observatory in Washington state offers stand alone summer workshops for teachers
 www.ligo-wa.caltech.edu/prof_dev.html
- LIGO participates in remote workshops for teachers by invitation from organizers
- Hanford observatory also provides summer teacher internships through the STAR teacher program www.ligo-wa.caltech.edu/internships.html
- Contact William Katzman (<u>wkatzman@ligo-la.caltech.edu</u>) and Dale Ingram (ingram_d@ligo-wa.caltech.edu)

K12 Education Projects

 Hanford participates in IU2U to make LIGO seismometer data available to students for research

www.i2u2.opg/elab/ligo/home/projects.jsp

- LIGO science classroom activities
 <u>www.ligo-wa.caltech.edu/activities.html</u>

 <u>www.einsteinsmessengers.org</u>
- Kids corner has LIGO games, activities, etc.
 - www.ligo-wa.caltech.edu/kids_corner.html

AU Optics Olympiad

- LIGO group at American University in Washington DC starting an Optics Olympiad for DC high school students
- Day of individual and group competition in optics, physics, and science

- Organizing now, looking for volunteers to help with all aspects
 - Panel speakers, demonstration development, teacher recruitment, day of volunteers, etc.
 - See me after the workshop if you are interested in participating in any way

Opportunities for Undergraduates

- LSC research experiences for undergraduates
 - International through U Florida www.phys.edu/ireu/index.html
 - Other LSC institutions
 www.ligo.org/students.php
- LIGO Laboratory SURF program

www.ligo.caltech.edu/LIGO_web/students/SURF/

Opportunities for Graduate Students and Postdocs

 Many LSC institutions have graduate programs in LIGO science

wiki.ligo.org/LAAC/UndergraduateResources wiki.ligo.org/LAAC/StudentOpportunities

- LIGO on Linkedin www.linkedin.com/groups?gid=2626910
- From the LIGO Academic Affairs Committee

"It doesn't hurt to drop the head of a group an email expressing your interest, even if they have not advertised. They will see you are keen and most likely email you if money becomes available. I know people within the LSC who have secured a position this way, or the groups have found money for the right person."

Outreach to the General Public

- Summaries of LIGO publications www.ligo.org/science/outreach.php
- Public festivals, fairs, and events
 - Traveling exhibit
 - US Science and Engineering Festival
 - World Science Festival
 - National Astronomy Night on the Mall

LIGO Online

On the web

www.ligo.caltech.edu

www.ligo.org

On Facebook

www.facebook.com/LigoScientificCollaboration

On Twitter

twitter.com/LIGO

- On Youtube
 - LIGO Generations <u>www.youtube.com/watch?v=3xVUmmSFxXu</u>
 - LIGO, A Passion for Understanding <u>www.youtube.com/watch?v=_OPTo1kPJI</u>
- LIGO Magazine

www.ligo.org/magazine.php