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Solutions to Einstein’s field equations predict gravitational waves: disturbances in space-time that
propagate at the speed of light. Detecting gravitational waves is challenging because the signals are
very weak and so a very sensitive instrument is required. The Laser Interferometric Gravitational-
Wave Observatory (LIGO) is a pair of detectors that search for these disturbances by looking for
small length changes caused by passing gravitational waves. Output from the detectors is analyzed
using an advanced form of matched filtering which helps to pull out small signals from a background
of noise. One promising class of sources of gravitational waves is binary black holes. This progress
report details steps taken toward optimizing the analysis pipelines for Advanced LIGO in the context
of binary black hole detection.

I. STATUS REPORT

In these first few weeks I have been developing intu-
ition about different aspects of gravitational wave detec-
tion including the inspiral process and detector response.
These investigations have allowed to me to get to know
my mentors better and have given me opportunities to
engage with the other SURF students working in my
group. I have also read a good deal about the LIGO anal-
ysis pipelines in preparation for making modifications to
different pipeline parameters. In the next month I hope
to continue learning about astrophysical sources of grav-
itational waves by attending the Caltech Gravitational
Wave Astrophysics School and to begin work on opti-
mizing the gstlal analysis pipeline by changing various
tunable parameters and running with signal injections.

What follows is a working draft of my final report
which contains an updated summary of what I have
learned and worked on so far.

II. BACKGROUND

A. Gravitational Waves and Their Sources

Gravitational waves (GWs) were first predicted by Ein-
stein in a 1916 paper, where he solved the field equations
of general relativity (GR) using the weak-field approxi-
mation and predicted that accelerating bodies would pro-
duce ripples in space-time that would propagate at the
speed of light. Gravitational waves offer another way to
test general relativity, but as of yet they have not been
directly detected.

Strong evidence for the existence of gravitational waves
was provided by Hulse and Taylor who noticed that
the energy loss of a binary system containing a pul-
sar matched the predictions of general relativity [1]. A

plot showing the curve from the quadrupole formula of
GR against the pulsar observations is shown in Fig. 1.
While the Hulse-Taylor system gives compelling indirect
evidence for the existence of gravitational waves, physi-
cists are eager to make a direct detection of gravitational
waves to provide further support for GR and to use GWs
to study the energetic astrophysical systems that emit
them, such as neutron star and black hole binaries.

FIG. 1. Accumulated shift in the orbital phase relative to
an assumed orbit with constant period caused by energy loss
to gravitational waves. The straight line represents the pre-
diction with no losses and the curve is the prediction from
general relativity. Plot taken from [2].

The generation of gravitational waves requires a



2

quadrupole source as opposed to electromagnetic waves
which only require a non-zero dipole moment. This is
because mass only comes in one variety as opposed to
charge which can be positive and negative. Unlike the ex-
change of two charges, the exchange of two masses leaves
the gravitational field the same. This means that binary
systems are a natural place to begin searches for gravita-
tional waves because they have a large mass quadrupole
moment and we know that they exist. Binary systems
containing neutron stars (NS) and black holes (BH) are
important examples that have been studied extensively
[3].

Binary systems evolve through 3 phases: an inspiral
phase driven by the release of energy through gravita-
tional waves, a merger phase where the binary compan-
ions combine into a single highly-perturbed black hole,
and a final phase where the resulting black hole rings
down [4]. During this entire process, called compact bi-
nary coalescence (CBC), the binary system is emitting
gravitational waves. Each phase of the binary coales-
cence represents a distinct regime of the gravitational
wave signal and must be computed independently. As
an example, consider Fig. 3 which shows a gravitational
waveform for the inspiral of a pair of 50 M� black holes
at a distance of 1 Mpc.

When spin is introduced, the waveforms generated by
binary systems become even more complicated. In the
simpler case of aligned spins (spins pointing in the same
direction as the orbital angular momentum), the wave-
forms change slightly. In the more general case, the spins
precess leading to modulation of the phase and amplitude
of the gravitational waves.

The form of gravitational waves generated in compact
binary coalescence depends at least 15 parameters of the
system although many of them only enter into the over-
all amplitude of the signal (the sky position angles, bi-
nary plane orientation angles, and luminosity distance)
[5]. Table I lists these parameters and gives descriptions.
The plots in Fig. 2 show how varying different parame-
ters of the binary system impacts the waveform.

B. LIGO

The Laser Interferometric Gravitational-Wave Obser-
vatory (LIGO) is a part of a global effort to make the first
direct detection of gravitational waves. The two LIGO
detectors (shown in Fig. 4) are 4 km Michelson interfer-
ometers that search for small disturbances in space-time
caused by passing gravitational waves. A GW detection
would open the door to a new technique in astrophysics
based on studying gravitational waves and would offer a
test of general relativity in the most extreme and highly-
dynamical regime of gravity that has ever been studied
[3].

Advanced LIGO (aLIGO), an upgraded version of the
initial LIGO detectors, is poised to begin a run with
unprecedented sensitivity and bandwidth. It is possi-

ble that these upgrades will enable a detection in the
near future. Compared to the initial LIGO detectors,
Advanced LIGO will be 10 times more sensitive and will
push the frequency band for gravitational wave searches
down to 10 Hz compared to the previous 40 Hz [6]. These
increases in sensitivity and bandwidth offer the possibil-
ity of hundreds of detections (see Table II for rates and
detectable distances in Advanced LIGO).

The Advanced LIGO detectors (along with the Ad-
vanced Virgo detector which will come online in ∼2017)
will be used to look for gravitational waves created by
the coalescence of binary systems. For smaller mass sys-
tems like binary neutron stars, only the inspiral phase is
in a frequency range detectable by LIGO. On the other
hand, for large mass binary black hole systems the entire
process of coalescence is detectable including the inspiral,
merger, and ringdown phases [7]. An example waveform
in the frequency domain for a binary system is shown
against the early Advanced LIGO noise curve in Fig. 5.
It is expected that Advanced LIGO will detect 40 neu-
tron star mergers per year and between 30 and 100 black
hole mergers [8].

Current limits on the rate of binary black hole merg-
ers are set by combined searches from the LIGO and
VIRGO scientific collaborations. By using large sets of
data, these collaborations have looked for the occurrence
of binary black hole coalescences for systems with to-
tal mass between 2 and 25 M� [9], systems with total
mass between 25 and 100 M� [10], and systems with to-
tal mass between 100 and 450 M� [11]. No detections
have been made yet, but the upgraded Advanced LIGO
detectors may find the first definitive gravitational wave
signal from these sources.

III. THE gstlal PIPELINE

When the LIGO detectors are in operation, there is a
constant stream of data that must be analyzed to look for
gravitational wave signals. In an ideal case, the search
pipelines used by LIGO would be able to identify candi-
date signals in the data in real time. This would allow
for prompt follow-up by telescopes around the world that
could detect an electromagnetic counterpart to the grav-
itational wave signal. In reality, some latency is incurred
although gstlal currently has latency of the order of 30
seconds [12]. This fast separation of signal and noise is
accomplished through an advanced form of matched fil-
tering [13]. In what follows, matched filtering will first be
discussed followed by a description of some of the many
additional techniques LIGO must use.

A. Matched Filtering

Basic matched filtering correlates a template signal
(which is known a priori) with data to detect a potential
signal. This means that if the gravitational wave signal
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TABLE I. 15 of the parameters specifying a compact binary system. The sky position angles, orientation relative to the line
of sight, and luminosity distance only enter into the overall amplitude of the signal and the coalescence phase and time can
be efficiently determined external to the parameter search. The remaining parameters (the masses and spins) are intrinsic and
must be determined using parameter estimation. Parameter list taken from [5].

Component masses m1, m2

Component spin vectors ~S1, ~S2

Sky position angles right ascension α, declination δ

Orientation relative to line of sight inclination ι, polarization angle ψ

Luminosity distance D

Coalescence phase ϕcoal

Coalescence time tcoal

FIG. 2. Frequency domain waveforms for compact binary systems generated by varying the binary companions’ masses (top
left), distances from the detectors (top right), and spins in the aligned (z) direction (bottom left). The bottom right plot shows
the effect of adding non-zero spins in the x- and y-directions to create a precessing waveform.

is known ahead of time, it is possible to use matched fil-
tering to look for it in the data. This technique forms the
basis of the LIGO CBC searches where the form of the
signal is known and so it is an important starting point.
In this section, the matched filter will be described and
I will show that it is optimal in the presence of Gaussian
noise.

Let’s start by assuming that the data coming from the
detectors x(t) can be written as a sum of some signal

s(t) and some noise n(t). The noise is assumed to be
stationary and Gaussian meaning the amplitude a Gaus-
sian probability distribution that is independent of time.
Thus the detector output takes the form

x(t) = s(t) + n(t). (1)

Now, given a filter (or template) h(t), the correlation
with the signal is defined to be
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FIG. 3. A time domain waveform (top) and a frequency do-
main waveform (bottom) generated using the quadrupole and
stationary phase approximations for the inspiral of a pair of
non-spinning 50 M� black holes at a distance of 1 Mpc.

TABLE II. Maximum detection distances, D, and rates, R,
for various binary systems for Advanced LIGO. The masses
are taken to be ∼1.4 M� for NS and ∼10 M� for BH. BH/BH
mergers can be detected at such large distances that cosmo-
logical effects are important and so the detection distance is
instead given as a redshift, z [4].

NS/NS NS/BH BH/BH

D 300 Mpc 650 Mpc z = 0.4

R, yr−1 1-800 . 1-1500 . 30-4000

c(τ) ≡
∫ ∞
−∞

x(t)h(t+ τ)dt (2)

where τ is the time that the filter lags the detector out-
put. This equation can be rewritten in the frequency
domain as

FIG. 4. Images showing the two LIGO sites in Livingston,
Lousiana (top) and Hanford, Washington (bottom). The in-
terferometer arms in each detector are 4 km long and contain
vacuum pipes along the whole optical path [6].

c(τ) =

∫ ∞
−∞

x̃(f)h̃∗(f)e−2πifτdf (3)

where the tilde denotes the Fourier transform given by

x̃(f) =

∫ ∞
−∞

x(t)e−2πiftdt. (4)

Now, since the noise is assumed to be zero-mean, then
the mean of c, called S, is given by

〈c〉 ≡ S =

∫ ∞
−∞

s̃(f)h̃∗(f)e−2πifτdf (5)

where 〈 〉 denotes an average over an ensemble of noise re-
alizations. S characterizes the signal response generated
by a filter h(t) to an input signal which contains s(t).
Another quantity of interest is the variance of c which is
given by

〈
(c− 〈c〉)2

〉
≡ N2 =

∫ ∞
−∞

Sn(f)|h̃(f)|2df (6)
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FIG. 5. An example frequency domain gravitational wave-
form (blue) generated for a binary system with two 5 solar
mass companions at a distance of 1 Mpc. The expected noise
amplitude spectral density (ASD) for early Advanced LIGO
is shown in red.

where Sn(f) = 2〈|ñ(f)|2〉 is the one-sided noise power
spectral density (PSD). This is the square of the noise
amplitude spectral density (ASD) which is idealized in
the red curve in Fig. 5. A plot showing the expected
noise ASD for Advanced LIGO and all the contributions
to it is shown in Fig. 6. The quantity we are interested
in is the signal to noise ratio (SNR) which is given by

ρ = S/N. (7)

This can be written in a more illuminating way if we
first define the scalar product of two function a(t) and
b(t) to be

(a|b) = 2

∫ ∞
0

df

Sn(f)

[
ã(f)b̃(f)∗ + ã(f)∗b̃(f)

]
. (8)

Now, taking advantage of the fact that the Fourier
transform of a real function y(t) obeys ỹ(−f) = ỹ∗(f),
we can rewrite S and N in terms of inner products to
give

ρ =
(se2πifτ |Snh)√

(Snh|Snh)
. (9)

From Eq. (8) it follows that ρ is maximized when the
filter h takes the form

h̃(f) = γ
s̃(f)e2πifτ

Sn(f)
(10)

where γ is an arbitary constant that I will simply set
to 1. The form of the filter we have derived is called

the matched filter and is the unique linear filter which
maximizes SNR.

Using the expression for h given in (10) one can com-
pute the optimal SNR and find that it is

ρopt = 2

(∫ ∞
0

|s̃|2

Sn
df

)1/2

= (s|s)1/2. (11)

FIG. 6. The Advanced LIGO noise ASD with the different
noise contributions shown. Plot taken from [14].

The signal to noise ratio is an important quantity to
distinguish signal from noise for LIGO and is used to
identify candidate events. The process of matched filter-
ing produces an SNR time series and peaks in the time
series indicate possible GW signals. Those peaks that ex-
ceed a certain threshold (taken to be 4 in current gstlal
analyses) are analyzed further and are called triggers.

While matched filtering forms the basis of LIGO data
analysis, more advanced techniques must be employed in
the LIGO searches because (i) the exact form of the sig-
nal is not known because the waveform shape depends
on parameters such as the masses and (ii) the data con-
tain non-stationary, non-Gaussian noise which cannot be
accounted for in the standard matched filter method. Be-
low I will discuss some of the techniques used by gstlal
to ovecome these problems.

B. Template Banks

The discussion of matched filtering above assumed that
the signal was known ahead of time, but in practice this
is not the case. In order to account for the fact that the
exact form of the gravitational wave signal is unknown,
it is necessary to construct large template banks which
span the parameter space. The intrinsic parameters (the
masses and spins of the binaries) are the important pa-
rameters for determining the shape of the waveform and
so in practice template banks are created by discretely
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sampling some subset of the mass and spin parameter
spaces. An example of a template bank spanning the pa-
rameter space of masses and the effective spin parameter
χeff is shown in Fig. 7.

Since the parameter values are continuous, it is never
possible to perfectly match a signal to a template, but
template banks can be constructed to give arbitrarily
small losses in detection rates and SNR. Typically, a min-
imal match between any signal and the nearest template
of somewhere between 95% and 97% is chosen to give
banks of manageable size which still represent the pa-
rameter space well.

FIG. 7. An example of the parameter values used in a tem-
plate bank where the color of the dots indicates the value of
the effective spin parameter χeff .

The procedure of constructing an optimal template
bank has been extensively studied and several methods
have emerged. In the case of searches over just the mass
parameters of the system (not as relevant now that spin
is considered important in these searches), it has been
shown that hexagonal template placement is optimal [15].
For higher-dimensional parameter spaces (e.g. those in-
cluding spin), a stochastic placement algorithm is used
which attempts to place random templates and discards
those that have a sufficient minimal match with those
around them [16]. This method has the advantage that
is scalable. Yet another method uses a modification of
the Gram-Schmidt process to construct an optimal ba-
sis of templates [17]. Below I will discuss some methods
used by the Advanced LIGO pipelines to compress the
template banks to make the search procedure faster.

C. Singular Value Decomposition

In order to make the gstlal pipeline run faster, it
would be ideal if a smaller set of templates could be used
to cover the same parameter space. This can be accom-

plished using a truncated singular value decomposition
(SVD) which identifies a set of basis templates which can
be used to reconstruct the entire template space with al-
most no losses [18]. In what follows, some of the details
of this technique along with the computational benefits
are discussed.

To begin, we construct the m× n template matrix H.
The rows of H are the templates (technically every two
rows are a template where one is the real part and one is
the imaginary part) and the columns are slices in time.
Fig. 8 shows how this is done for an example set of
templates.

FIG. 8. Top: a series of templates in the time domain. Bot-
tom: a template matrix H whose rows are templates and the
columns are time samples. Fig. taken from [18].

In general, H will not be a square matrix, but it is
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possible to factor it into a product of three useful matri-
ces. This is called the singular value decomposition and
is written:

H = UΣVT (12)

where U is an m × m unitary matrix whose rows are
orthonormal basis vectors, V is an n × n unitary recon-
struction matrix, and Σ is an m × n diagonal matrix
whose diagonal values σi are called the singular values of
H. This decomposition can be rewritten as

Hµj =

N∑
ν=1

vµνσνuνj . (13)

In order to reduce the computational cost of filtering,
only the basis vectors corresponding to the largest singu-
lar values are kept. These are the basis vectors that are
most important to the reconstruction of H. As a common
convention, the σi are listed in descending order so that
choosing the largest N ′ of the σi is equivalent to choosing
the first N ′. This truncation produces an approximate
reconstruction of H given by

Hµj ≈ H ′µj =

N ′∑
ν=1

vµjσνuνj (14)

where N ′ < N . This reduces the number of basis tem-
plates from N to N ′ and allows for a reconstruction of the
original bank from a smaller basis. It is possible to show
that performing this truncation produces a fractional loss
of SNR given by

〈
δρ

ρ

〉
=

1

2N

N∑
ν=N ′+1

σ2
ν . (15)

In practice, the value of N ′ is chosen so that the frac-
tional loss in SNR is less than .001. In the case of a small
template bank considered in [18], the number of tem-
plates was reduced from N = 912 to N ′ = 118 under this
condition. This represents almost an order of magnitude
reduction in the number of templates and corresponds
to huge reduction in computing costs. SVD is typically
applied to small sub-banks which are close in parameter
space so that most of the waveforms are similar and thus
a smaller number of basis templates can be used.

D. Multivariate Filtering

Another way that the gstlal pipeline improves the
filtering speed is by taking advantage of the form of com-
pact binary coalescence signals. These signals, known as
chirps, monotonically increase in frequency throughout

the inspiral phase. In addition, a binary system spends
most of the time during inspiral at low frequencies and
the merger phase is relatively short compared to the in-
spiral. This predictable pattern in the signal can be taken
advantage of by using different sampling rates. Dividing
the signal into different pieces that are sampled at differ-
ent rates is called multivariate filtering (or multibanding)
and is a technique used to efficiently analyze LIGO data
[19].

There is a theorem in signal processing called the
Nyquist-Shannon Theorem which states that if a func-
tion is band-limited so that the frequencies that comprise
it satisfy |f | < B, then it can be completely determined
by taking samples at a rate of 2B Hz. This rate is called
the Nyquist rate and it represents the minimum sam-
pling rate that can be used to determine a signal without
aliasing.

This theorem can be applied to LIGO waveforms by
dividing each waveform into a series of time slices which
are all sampled at different rates. Since the binary spends
most of the inspiral at low frequencies, a small sampling
frequency can be used. It is only during the more dy-
namic high-frequency portion of the waveform that a
high sampling frequency is necessary. This greatly re-
duces the amount of data that must be processed in the
the pipeline.

Since the discreteness of the signals is important in this
discussion, I will represent templates as discrete functions
and I will reserve the letter k to indicate a time index. If
the original signal was sampled at a rate f0 and is divided
into S non-overlapping (and thus orthogonal) time slices,
it can be written as a sum of those slices:

h[k] =

S−1∑
s=0

{
hs[k] if ts ≤ k/f0 < ts+1

0 otherwise
(16)

for the S integers {f0ts} such that 0 = f0t0 < ... < f0tS .
For gstlal, the time slice boundaries are chosen such
that each interval [ts, ts+1) is sub-critically sampled by a
power-of-two sample rate fs. Once the time slice bound-
aries are selected, the templates can be downsampled
without aliasing. The resulting downsampled signal is
made up of time slices given by:

hs[k] =

{
h[k f

0

fs ] if ts ≤ k/fs < ts+1

0 otherwise
. (17)

An image showing how this downsampling is typically
done for a chirp signal is shown in Fig. 9. As with
SVD, time slicing is typically performed over sub-banks
which contain many templates that are close in parame-
ter space. Since the waveforms in the sub-banks are all
quite similar, the time-slicing can be performed identi-
cally for all of them.
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FIG. 9. A time domain chirp waveform with time slices cho-
sen. The sampling frequency of each time slice is indicated
by the shading. Fig. taken from [19].

E. χ2 Test

Once the peaks in the SNR are found and counted as
triggers, there is still a possibility that they correspond
to very loud noise in the detector. These short-duration,
high-amplitude noise events are called glitches and un-
fortunately they can create responses in many templates
at once. Glitches represent non-Gaussian noise in the de-
tector that is very hard to deal with. One method that
has been developed to handle glitches is the use of a χ2

test. Below I will describe two χ2 tests and how they
help to veto glitches.

1. Traditional χ2

In the traditional χ2 test, the interval [0,∞) is divided
into p disjoint sub-intervals ∆f1, ...,∆fp. The intervals
are chosen so that the expected signal contributions from
a chirp in each interval are equal. This condition can
be written more succinctly by first defining a set of p
Hermitian inner products

(a(f), b(f))p =

∫
−∆fp∪∆fp

a∗(f)b(f)

Sn(f)
df. (18)

Then the frequency bands are chosen so that for a nor-
malized template, h,

(h̃, h̃)p =
1

p
(19)

Now, if we consider the signal to take the simple form

s(t) =
D

d
h(t− t0) (20)

where D is the distance to the source, d is the effective
distance, and t0 is the coalescence time. This is the basic
form of a chirp signal where the phase is known. Then,
as shown above, the signal to noise ratio in the optimal
case is

ρ = (s|s)1/2 =
D

d
(h · h)1/2 =

D

d
(21)

Now define the contribution to the SNR from a specific
frequency interval as ρj . One can show that

〈ρj〉 =
1

p

D

d
〈ρ2
j 〉 =

1

p
+

1

p2

(
D

d

)2

(22)

where here 〈 〉 corresponds to an average over many noise
ensembles. In the absence of signal (d → ∞) we have
〈ρj〉 = 0, and 〈ρ2

j 〉 = 1
p . Now define

∆ρj ≡ ρj −
ρ

p
. (23)

Then the χ2 is defined to be [20]:

χ2 ≡ p
p∑
j=0

(∆ρj)
2 (24)

In the case of stationary, Gaussian noise, this quantity
is a classical χ2 distribution with p−1 degrees of freedom,
hence the name χ2. Low values of χ2 indicate potential
signal while high values indicate probable glitches. A
plot demonstrating how the χ2 can be used to separate
signal from noise is shown in Fig. 10. The long tail
of background events into the high SNR region is non-
Gaussian and makes rejection of noise much harder.

One can intuitively understand the way this test works
by looking at what it does. For each of the frequency
intervals the χ2 looks at the contribution to ρ and com-
pares the contribution to the expectation. For a glitch,
the contributions to the SNR will be dominant in a small
number of frequency intervals leading to a large χ2 value.
For a normal chirp signal, the contributions to the SNR
will be evenly spread out among the frequency intervals
and so the χ2 will be low. This allows for the rejection
of unwanted glitches.

2. Autocorrelation χ2

Another form of χ2 that one can use to reject glitches
is called the autocorrelation χ2 and is obtained by com-
paring the SNR time series to the auto-correlation of the
template. This statistic has the advantage that once the
SNR time series is computed, all of the necessary pieces
are already in memory and so it is extremely computa-
tionally efficient [5].
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FIG. 10. A plot showing signal and background events with
different SNR and χ2 values. It is clear that a simple SNR
threshold is not enough to separate signal from background.
Fig. taken from [5].

Suppose that the detector output is of the form x(t) =
n(t) + Ah(t) where A is some amplitude and h is unit-
normalized so that 〈h, h〉 = 1. Then, the SNR time series
is:

ρ(τ) = 〈n, he2πifτ 〉+A〈h, he2πifτ 〉 (25)

= 〈n, he2πifτ 〉+ α(τ) (26)

where α(τ) is the autocorrelation of the template. The
time τ = 0 is chosen to be the point when the SNR
is at a maximum. Maximizing in time and taking an
ensemble average so that the noise term disappears gives
〈ρmax〉 ≈ A. The quantities ρmax, ρ(τ), and α(τ) are
easily computable from the templates and data while the
quantity 〈n, he2πifτ 〉 will be Gaussian distributed when
the noise is Gaussian. Thus, it is possible to compute a
χ2 of the form

χ2 =

∫ Tmax

0

|ρ(τ)− ρmaxα(τ)|2dτ. (27)

Tmax is a tunable parameter called the autocorrelation
length and determines the number of degrees of freedom
in the χ2 distribution (e.g. if the SNR time series is com-
puted with a time interval ∆t, the number of degrees of
freedom is N = Tmax/∆t).

F. Non-stationary Noise

One final hurdle for the LIGO detectors is non-
stationary noise (i.e. noise that evolves over time). The
non-stationary nature of the LIGO noise can best be seen

by looking at the evolution of the noise ASD shown in
Fig. 11.

FIG. 11. Noise ASD curves for the H1 detector during S6
(May 9, 2010 - November 4, 2010). The ASD for the mode
(blue), mean (red), and best (green) operation are shown.
Plot taken from [21].

For forms of non-stationary noise that evolve slowly
over time (i.e. those due to changes to the detector hard-
ware), it is possible to simply filter the data over time in-
tervals that are small compared to the time scale of the
non-stationary noise. Non-stationary noise that evolves
on a shorter time-scale is more difficult to deal with (such
as anthropogenic noise) and impacts the detector sensi-
tivity.

An obvious way to reduce the backgrounds from non-
stationary glitches is the requirement of coincidence be-
tween detectors. Candidate gravitational wave events
with high enough signal-to-noise ratios for a specific tem-
plate waveform in one detector are counted as triggers.
Coincidence occurs when identical triggers (those corre-
sponding to the same template waveforms and close in
time) are found in multiple detectors [5]. It is unlikely
that glitches will occur at the same time in multiple de-
tectors and so the coincidence requirement makes the
LIGO searches more robust against them.

G. Tuning the Pipeline

Another method for handling noise is to tune the
matching algorithms used in the analysis pipelines. A
simple example of a parameter that can be varied is the
threshold signal-to-noise ratio used in determining if a
signal is significant. A more involved example is the type
of χ2 (either a traditional χ2, an autocorrelation χ2, or
one of many others that have been developed [22, 23])
used in the statistical tests performed on the data to de-
termine significance.
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