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Abstract: Many optical, mechanical, and optomechanical
systems are assumed to be linear and time-invariant. Under
this assumption, the parameters of such a system can be es-
timated by measuring the system’s transfer function. In the
case of systems such as alignment control systems, seismic
isolation systems, and mechanical suspensions, transfer func-
tion measurement can be quite expensive, as it can require
exciting the system down to millihertz frequencies.

With a little forethought, one can choose the measurement’s
excitation frequencies (and their amplitudes) so as to maxi-
mize the amount of information learned about the system’s
parameters. One method for quantifying the amount of infor-
mation gained is to compute the Fisher matrix of the mea-
surement. ' The inverse of the Fisher matrix provides a lower
bound on the covariance matrix of the estimated parameters.

1 General discussion

We define the following notation: we have an vr1 system whose
transfer function H(f) depends on a certain set of parameters
0 =(01,09,...,0)). We can probe this system by exciting its
input with a signal x(f) and reading back the response y(f) =
H(f)x(f)+n(f), where n(f) is some readout noise. Our goal is
to produce an estimate H(0;f) given our observed response
y(f), our excitation x(f), and our estimate of the noise n(f).
In practice, we excite the system with sinusoids at frequen-
cies f1,f2,...,fn. We record the (in principle complex) exci-
tation amplitudes x1,x9,...,xn5 and the response amplitudes
Y1,¥2,-..,YN. These amplitudes have been corrupted by noise
whose amplitudes are ni,ng,...,ny; in general, we have

oa=1,2,...,N, 1

Yo = HoXo + g

where Hy = H(fy). On the other hand, given an estimate
H(0; f) of the system, we can write down a set of estimated
amplitudes §1,92,...,9n, with

Yo =Ha®xs; a=1,2,...,N, 2)

Our goal is to find the value of  which makes the estimated
responses {J,} approach the observed responses y,. To this
end, we can write down a likelihood function £(8) o< p({y4}10),

where p({y,}|0) is the probability of having observed the am-
plitudes {yy} given a certain value of 0. From here on we will
assume that the noise is Gaussian, which results in a likeli-
hood function®

L£(0) xx exp 3)

_N_l | Yo — ya(9)|2
a0 2Ingl?
How should we place our N frequencies so as to maximize the
amount of information we can learn about H? Intuitively, we
know we should choose our frequencies so as to maximize the
curvature of £ (or, equivalently, the curvature of In£) with
respect to 0. To find an expression for the curvature, we vary
0 and keep track of terms up to second order:
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where summation over i and j is understood. Once we have
found parameters 0y which maximize In £, the first-derivative
terms will vanish, leaving only the second-derivative (i.e.,
curvature) terms. These curvature terms are elements of the
Fisher matrix F:°
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If our estimate § is unbiased, we expect yq — 4 — 0, and thus

1 o [095 95«
Fij= « . (6)
5= L0, 0, 60
Since 94 = Hyxq, we have
lxal? ., |0Hg 0Ho
Fij= : (7)
9= L, ™ | a6, o, 0

which is the discrete-frequency equivalent of the expression
found by L. Price. ! Following the usual convention, we’ll write
o(Hy) = |nfo(/-')c(x|-C

21If one is not comfortable with likelihood functions, note that —In £ is
equivalent to the usual x2 statistic used for parameter estimation.

b Note that F = 3, where H is the Hessian of In £ evaluated at 0p. Strictly
speaking F is the observed Fisher information, which is to be contrasted
with the expected Fisher information. See Efron and Hinkley? for more
information.

¢ Alternatively, we can decompose each observation into real/imaginary
parts: yo = y((xr) +iyfxi), and likewise for Hy and ny. Then we can write down
an alternative Fisher matrix
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In the case ng) =n®

« » this reduces to the definition given above.



The inverse of the Fisher matrix provides a lower bound for
the covariance matrix:
IS )

where the inequality is understood to be elementwise. This is
the so-called Cramér—Rao bound.

2 Single-frequency estimation

As an example, we apply the above concepts to the prob-
lem of estimating the parameters of a single-pole system
H(f)=Fk/(1+if/p) using an excitation at only one frequency.
This system describes, for example, the optical response of a
resonant Fabry—Pérot cavity to length or frequency perturba-
tions. In this context, k is called the optical gain and p is called
the cavity pole. For concreteness we can consider the avrico
DARM cavity, for which (during O1) we have k =~ 3.2 mA/pm
and p = 350 Hz.

For this system, our parameter vector is 0 = (k, p), so the
Fisher matrix will be 2 x 2. As a start, we’ll consider the case
where we have only a single excitation at a frequency f1. This
results in only a single observation y;.4

In this instance, the Fisher matrix is

p? kpf}
1| p2+ff (p2+s2)
F=_ 10
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(p2+£2)°  (p2+f2)

and as a result, the covariance matrix X is bounded element-
wise from below by F~1:
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From here, the goal is to choose f1 so as to provide the “op-
timal” X. To make progress, we need to make assumptions
about 01, which means making assumptions about the excita-
tion amplitude x; and the readout noise amplitudes n1. The
next sections explore two simple cases for x; and nj.

2 Flat excitation and white readout noise

To start with, we’ll assume that the readout noise ny is Gaus-
sian and white as a function of frequency. (In the case of aLico
DARM, the assumption of whiteness is true only above 100 Hz
or so.) We'll also assume that the excitation amplitude is flat:
xXq = X0 for all a. Then o1 = o(f1) =0 (i.e., it is independent of
frequency). In this case, the elements of £ are minimized as
follows:

d However, since y1 is complex, it contains two pieces of information:
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Figure 1: Normalized Cramér—Rao bounds on the covariance
matrix X for a single-frequency TF estimate of the
system H(f) = k/(1+if/p), with k = 3.2mA/pm and
p = 350Hz. Here we have assumed a white readout
noise and a flat excitation amplitude.

1. To minimize X(k,k), one should choose fi = 0Hz. This
results in
o2 —-a2p/k

202 | gm0 |

(12)

which is evidently unacceptable for simultaneous estima-

tion of k and p.

To minimize X(k, p), one should again choose f; = 0Hz.

3. To minimize X(p, p), one should choose fi = p/v2. This
results in

o

(13)
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4. To minimize detX, one should choose fi; = p/v/3. This
results in

£(pV3) = %
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In figure 1 we plot the elements of X, along with detX, as
a function of fi, assuming that the Cramér—Rao bound is
saturated.

2 Constant-sNR excitation

Often we can do better than a flat excitation amplitude. If
we already have reasonable knowledge of k, p, and n, it is
desirable to aim for the measurement to have a constant snr.
For our purposes, we define this as py = [ya/Nal = [xeHa/Mol.
Therefore, we choose |xy| = plngl/|Hyl, where p is our target

SNR, and hence oﬁ,‘"’i’ = |Hql/p.
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Figure 2: Normalized Cramér—-Rao bounds on the covariance
matrix X for a single-frequency TF estimate of the
system H(f) =k/(1+if/p), with k = 3.2mA/pm and
p = 350Hz. Here we have assumed that the response
y has a constant snr p above the readout noise n.

With this choice of excitation amplitude, the Fisher matrix

is
1 fi
k2 kp (p?+f2)
2 p\p 1

kp (p2+f2) p2(p%+r2)

and the covariance matrix satisfies

As expected, the bound on the covariance goes down like p?.
To minimize the bounds on both (%, k) and Z(k, p), one should
again choose f; = 0Hz. However, this again results in Z(p,p) =
00:

k%2 —kplp?

—kp/p2 0o an

2(0) =

This time, the bounds on both X(p, p) and detX are minimized
by choosing f1 = p:

2,2 2
k4/p kp/p ] (18)

Hp)=2 [—kp/pz 2p%/p®
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