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Abstract: Many optical, mechanical, and optomechanical
systems are assumed to be linear and time-invariant. Under
this assumption, the parameters of such a system can be es-
timated by measuring the system’s transfer function. In the
case of systems such as alignment control systems, seismic
isolation systems, and mechanical suspensions, transfer func-
tion measurement can be quite expensive, as it can require
exciting the system down to millihertz frequencies.

With a little forethought, one can choose the measurement’s
excitation frequencies (and their amplitudes) so as to maxi-
mize the amount of information learned about the system’s
parameters. One method for quantifying the amount of infor-
mation gained is to compute the Fisher matrix of the mea-
surement.1 The inverse of the Fisher matrix provides a lower
bound on the covariance matrix of the estimated parameters.

1 General discussion

We define the following notation: we have an lti system whose
transfer function H( f ) depends on a certain set of parameters
θ = (θ1,θ2, . . . ,θM). We can probe this system by exciting its
input with a signal x( f ) and reading back the response y( f )=
H( f )x( f )+n( f ), where n( f ) is some readout noise. Our goal is
to produce an estimate Ĥ(θ; f ) given our observed response
y( f ), our excitation x( f ), and our estimate of the noise n( f ).
In practice, we excite the system with sinusoids at frequen-

cies f1, f2, . . . , fN . We record the (in principle complex) exci-
tation amplitudes x1, x2, . . . , xN and the response amplitudes
y1, y2, . . . , yN . These amplitudes have been corrupted by noise
whose amplitudes are n1,n2, . . . ,nN ; in general, we have

yα = Hαxα+nα; α= 1,2, . . . , N, (1)

where Hα = H( fα). On the other hand, given an estimate
Ĥ(θ; f ) of the system, we can write down a set of estimated
amplitudes ŷ1, ŷ2, . . . , ŷN , with

ŷα = Ĥα(θ)xα; α= 1,2, . . . , N, (2)

Our goal is to find the value of θ which makes the estimated
responses { ŷα} approach the observed responses yα. To this
end, we can write down a likelihood function L(θ)∝ p({yα}|θ),

where p({yα}|θ) is the probability of having observed the am-
plitudes {yα} given a certain value of θ. From here on we will
assume that the noise is Gaussian, which results in a likeli-
hood functiona

L(θ)∝ exp

[
−

N−1∑

α=0

|yα− ŷα(θ)|2
2|nα|2

]
. (3)

How should we place our N frequencies so as to maximize the
amount of information we can learn about H? Intuitively, we
know we should choose our frequencies so as to maximize the
curvature of L (or, equivalently, the curvature of lnL) with
respect to θ. To find an expression for the curvature, we vary
θ and keep track of terms up to second order:

lnL(θ+δθ)' lnL
∣∣
θ+

∂[lnL]
∂θi

∣∣∣∣
θ

δθi +
1
2
∂2[lnL]
∂θi∂θ j

∣∣∣∣
θ

δθi δθ j, (4)

where summation over i and j is understood. Once we have
found parameters θ0 which maximize lnL, the first-derivative
terms will vanish, leaving only the second-derivative (i.e.,
curvature) terms. These curvature terms are elements of the
Fisher matrix F:b

Fi j =− ∂2[lnL]
∂θi∂θ j

∣∣∣∣
θ0

(5a)

= ∂2

∂θi∂θ j

[∑
α

|yα− ŷα(θ)|2
2|nα|2

]∣∣∣∣
θ0

(5b)

=
∑
α

1
2|nα|2

[
∂ ŷ∗α
∂θi

∂ ŷα
∂θ j

− (
y∗α − ŷ∗α

) ∂2 ŷα
∂θi∂θ j

+cc
]∣∣∣∣
θ0

. (5c)

If our estimate ŷ is unbiased, we expect yα− ŷα → 0, and thus

Fi j =
∑
α

1
|nα|2

Re
[
∂ ŷ∗α
∂θi

∂ ŷα
∂θ j

]∣∣∣∣
θ0

. (6)

Since ŷα = Ĥαxα, we have

Fi j =
∑
α

|xα|2
|nα|2

Re

[
∂Ĥ∗

α

∂θi

∂Ĥα

∂θ j

]∣∣∣∣∣
θ0

. (7)

which is the discrete-frequency equivalent of the expression
found by L. Price.1 Following the usual convention, we’ll write
σ(Hα)= |nα/xα|.c

a If one is not comfortable with likelihood functions, note that − lnL is
equivalent to the usual χ2 statistic used for parameter estimation.

b Note thatF=−H, whereH is theHessian of lnL evaluated at θ0. Strictly
speaking F is the observed Fisher information, which is to be contrasted
with the expected Fisher information. See Efron and Hinkley2 for more
information.

c Alternatively, we can decompose each observation into real/imaginary
parts: yα = y(r)

α + iy(i)
α , and likewise for Hα and nα. Then we can write down

an alternative Fisher matrix

Fi j =
N∑

α=1

∑

β∈{r,i}

|xα|2∣∣∣n(β)
α

∣∣∣
2
∂Ĥ(β)

α

∂θi

∂Ĥ(β)
α

∂θ j
. (8)

In the case n(r)
α = n(i)

α , this reduces to the definition given above.
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The inverse of the Fisher matrix provides a lower bound for
the covariance matrix:

Σ≥F−1, (9)

where the inequality is understood to be elementwise. This is
the so-called Cramér–Rao bound.

2 Single-frequency estimation

As an example, we apply the above concepts to the prob-
lem of estimating the parameters of a single-pole system
H( f ) = k/(1+ i f /p) using an excitation at only one frequency.
This system describes, for example, the optical response of a
resonant Fabry–Pérot cavity to length or frequency perturba-
tions. In this context, k is called the optical gain and p is called
the cavity pole. For concreteness we can consider the aligo
darm cavity, for which (during O1) we have k ' 3.2 mA/pm
and p ' 350 Hz.

For this system, our parameter vector is θ = (k, p), so the
Fisher matrix will be 2×2. As a start, we’ll consider the case
where we have only a single excitation at a frequency f1. This
results in only a single observation y1.d

In this instance, the Fisher matrix is

F= 1
σ2

1




p2

p2 + f 2
1

kpf 2
1(

p2 + f 2
1
)2

kpf 2
1(

p2 + f 2
1
)2

k2 f 2
1(

p2 + f 2
1
)2




, (10)

and as a result, the covariance matrix Σ is bounded element-
wise from below by F−1:

Σ≥σ2
1




1
p4

(
p2 + f 2

1
)2 −

(
p2 + f 2

1
)2

kp3

−
(
p2 + f 2

1
)2

kp3

(
p2 + f 2

1
)3

k2 p2 f 2
1




. (11)

From here, the goal is to choose f1 so as to provide the “op-
timal” Σ. To make progress, we need to make assumptions
about σ1, which means making assumptions about the excita-
tion amplitude x1 and the readout noise amplitudes n1. The
next sections explore two simple cases for x1 and n1.

2 Flat excitation and white readout noise

To start with, we’ll assume that the readout noise nα is Gaus-
sian and white as a function of frequency. (In the case of aligo
darm, the assumption of whiteness is true only above 100Hz
or so.) We’ll also assume that the excitation amplitude is flat:
xα = x0 for all α. Then σ1 =σ( f1)≡σ (i.e., it is independent of
frequency). In this case, the elements of Σ are minimized as
follows:

dHowever, since y1 is complex, it contains two pieces of information:
y1 = y(r)

1 + iy(i)
1 .
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Figure 1: Normalized Cramér–Rao bounds on the covariance
matrix Σ for a single-frequency TF estimate of the
system H( f ) = k/(1+ i f /p), with k = 3.2mA/pm and
p = 350Hz. Here we have assumed a white readout
noise and a flat excitation amplitude.

1. To minimize Σ(k,k), one should choose f1 = 0Hz. This
results in

Σ(0)≥
[

σ2 −σ2 p/k
−σ2 p/k ∞

]
, (12)

which is evidently unacceptable for simultaneous estima-
tion of k and p.

2. To minimize Σ(k, p), one should again choose f1 = 0Hz.
3. To minimize Σ(p, p), one should choose f1 = p/

p
2. This

results in

Σ
(
p/
p

2
)≥ 9

4

[
σ2 −σ2 p/k

−σ2 p/k 3σ2 p2/k2

]
. (13)

4. To minimize detΣ, one should choose f1 = p/
p

3. This
results in

Σ
(
p/
p

3
)≥ 16

9

[
σ2 −σ2 p/k

−σ2 p/k 4σ2 p2/k2

]
. (14)

In figure 1 we plot the elements of Σ, along with detΣ, as
a function of f1, assuming that the Cramér–Rao bound is
saturated.

2 Constant-snr excitation

Often we can do better than a flat excitation amplitude. If
we already have reasonable knowledge of k, p, and n, it is
desirable to aim for the measurement to have a constant snr.
For our purposes, we define this as ρα = |yα/nα| = |xαHα/nα|.
Therefore, we choose |xα| = ρ|nα|/|Hα|, where ρ is our target
snr, and hence σ(r,i)

α = |Hα|/ρ.

2



101 102 103

Excitation frequency [Hz]

100

101

M
ag

ni
tu
de

×
ρ

∣∣Σ(k, k)/k2∣∣1/2

∣∣Σ(k, p)/kp
∣∣1/2

∣∣Σ(p, p)/p2∣∣1/2

∣∣(detΣ)/k2 p2∣∣1/4

Figure 2: Normalized Cramér–Rao bounds on the covariance
matrix Σ for a single-frequency TF estimate of the
system H( f ) = k/(1+ i f /p), with k = 3.2mA/pm and
p = 350Hz. Here we have assumed that the response
y has a constant snr ρ above the readout noise n.

With this choice of excitation amplitude, the Fisher matrix
is

F= ρ2




1
k2

f 2
1

kp
(
p2 + f 2

1
)

f 2
1

kp
(
p2 + f 2

1
)

f 2
1

p2
(
p2 + f 2

1
)




(15)

and the covariance matrix satisfies

Σ≥ 1
ρ2




k2

p2

(
p2 + f 2

1
) − k

p
(
p2 + f 2

1
)

− k
p

(
p2 + f 2

1
) 1

f 2
1

(
p2 + f 2

1
)2


 . (16)

As expected, the bound on the covariance goes down like ρ2.
To minimize the bounds on both Σ(k,k) and Σ(k, p), one should
again choose f1 = 0Hz. However, this again results in Σ(p, p)=
∞:

Σ(0)≥
[

k2/ρ2 −kp/ρ2

−kp/ρ2 ∞
]

. (17)

This time, the bounds on both Σ(p, p) and detΣ are minimized
by choosing f1 = p:

Σ(p)≥ 2
[

k2/ρ2 −kp/ρ2

−kp/ρ2 2p2/ρ2

]
. (18)
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