
136	



137	



This	is	a	typical	block	diagram	for	a	feedback	loop	made	with	a	digital	control	system.	
Note	the	symmetry	of	the	diagram.	The	le=	is	all	analog	components,	the	right	
so=ware.	The	top	is	the	sensing	path,	the	bo?om	the	actuaAon	path.	
Many	of	the	blocks	are	what	we	have	seen	before,	the	plant,	sensor,	actuator,	and	
controller.	The	compensaAon	filters	and	matrix	transformaAons	are	opAonal,	and	not	
unique	to	digital	control	systems.	These	are	simply	used	to	put	signals	into	some	
desired	units	(e.g.	meters)	and	coordinate	system	(e.g.	x-y-z	Cartesian	coordinates).	
The	main	new	thing	here	are	the	ADC	and	DAC,	which	move	signals	into	and	out	of	
the	computer;	and	the	AnA-alias	and	AnA-image	filters	which	smooth	over	the	
transiAons	through	the	ADC	and	DAC.	

138	



The	AnA-alias	filter	removes	signals	close	to	and	above	the	sampling	frequency,	
before	the	ADC	brings	the	signals	into	the	computer.	The	anA-image	filter	removes	
harmonics	of	the	computer	output	before	sending	those	signals	to	the	actuators.	
We’ll	see	examples	of	this	in	the	upcoming	slides.	

139	



These	blocks	are	opAonal,	but	make	life	easier.	

140	



141	



Let’s	take	a	look	next	at	what	the	AnA-alias	filter	does	for	us.	

142	



Here	is	an	example	of	a	conAnuous	sine	wave,	at	3.2	Hz.	

143	



We	now	sample	this	wave	at	16	Hz	with	the	ADC.	The	conAnuous	wave	passes	cleanly	
through	each	of	the	sampled	points.	

144	



But,	we	could	also	draw	a	higher	frequency	sine	wave	through	these	points.	This	
yellow	line	is	at	3.2+16=19.2	Hz.	So,	when	we	sample	with	the	ADC,	we	don’t	know	
which	one	we	have.	Thus,	we	make	the	assumpAon	that	our	sampled	points	are	
passing	through	the	lowest	possible	frequency	sine	wave.	

145	



Moving	from	the	Ame	domain	to	the	frequency	domain,	here	is	an	amplitude	spectral	
density	(ASD)	of	the	3.2	Hz	conAnuous	wave.	

146	



Adding	the	ASD	of	the	sampled	data,	we	get	the	red	curve	(because	we	assume	the	
sampled	points	represent	the	lowest	possible	frequency).	I	have	also	added	the	
verAcal	dashed	line	at	what	is	known	as	the	Nyquist	frequency.	This	is	half	the	
sampling	frequency.	It	turns	out	that	you	can	only	recover	signals	that	are	<	half	the	
sampling	frequency.	Basically,	the	Nyquist	sampling	rule	says	that	you	need	at	least	2	
samples	per	sine	wave	to	recover	that	sine	wave.	This	is	why	the	red	line	stops	at	this	
verAcal	Nyquist	frequency	line,	we	can’t	recover	anything	beyond	it.	

147	



Now,	let’s	look	at	the	ASD	of	the	yellow	line.	It’s	at	19.2	Hz.	

148	



If	we	were	to	sample	that	line,	unsurprisingly	our	sampled	ASD	would	look	exactly	
like	our	sampled	ASD	for	the	3.2	Hz	wave,	because	we	assume	the	samples	represent	
the	lowest	possible	frequency.	This	down-converAng	of	signals	from	above	the	
Nyquist	to	below	is	called	‘Aliasing’.	The	aliased	frequency	is	found	by	subtracAng	the	
sampling	frequency	from	the	true	frequency	as	many	Ames	as	necessary	unAl	it	is	
less	than	the	Nyquist	(and	taking	the	absolute	value	if	necessary).	Aliased	frequency	
=	abs(true	frequency	–	n*SamplingFrequency),	where	n	is	the	integer	required	to	
make	the	aliased	frequency	less	than	the	Nyquist.	

149	



To	avoid	aliasing,	we	apply	a	low	pass	filter	that	cuts	off	any	signals	above	the	
Nyquist.	This	way,	when	we	assume	our	samples	pass	through	signals	below	the	
Nyquist,	our	assumpAon	is	not	a	bad	one.	

150	



Next,	let’s	look	at	the	anA-image	filter.	It	turns	out,	this	is	very	similar	to	the	aliasing	
problem.	

151	



Here	is	an	example	of	a	0.8	Hz	sine	wave	that	the	DAC	puts	out,	with	16	Hz	sampling.	
Note	all	the	discrete	steps.	This	happens	because	the	DAC	holds	its	value	between	
samples	(known	as	a	zero-order-hold).	The	problem	with	these	steps	is	that	all	those	
li?le	corners	generate	higher	order	harmonics.	If	we	take	the	ASD	of	this	curve,	we	
see..	

152	



…this.	Note,	we	do	get	a	nice	peak	the	desired	0.8	Hz.	However,	we	also	get	an	
infinite	series	of	peaks	at	all	the	harmonics.	

153	



Like	in	the	aliasing	case,	we	apply	a	low	pass	filter	to	remove	all	those	harmonics.	
This	is	called	the	anA-image	filter.	

154	



A=er	applying	the	anA-image	filter,	we	now	have	a	smooth	0.8	Hz	sine	wave.	Note,	
there	is	a	small	phase	delay,	resulAng	from	the	phase	loss	of	the	anA-image	filter.	

155	



Here	are	example	anA-alias	and	anA-image	filters	from	Stanford.	The	sample	rate	is	
about	65	kHz.	Likely,	there	is	no	parAcular	reason	why	the	two	filters	aren’t	the	same.	
They	just	as	well	could	be.	Probably	it	is	because	our	system	is	a	prototype	system	
and	the	components	were	installed	at	different	Ames.	These	filters	have	just	a	single	
pole,	at	109	Hz	or	295	Hz.	With	only	a	single	pole,	the	pole	frequency	must	be	much	
less	than	the	sampling	rate.	See	the	backup	slides	describing	how	we	improve	on	this	
with	oversampling	and	the	use	of	addiAonal	digital	AA	and	AI	filters.	

156	



Here	is	what	some	of	these	components	look	like	at	the	sites,	in	their	electronics	
rack.	

157	



If	you	look	inside	an	AA	or	AI	board,	you’ll	see	some	resistors	and	capacitors	that	give	
you	a	single	pole	low	pass	filter.	

158	



If	you	look	inside	the	IO	chassis,	you’ll	see	some	ADC	cards	and	DAC	cards.	

159	



For	compuAng,	there	are	two	main	types	of	computers.	The	front-end	computer	is	
the	one	that	runs	the	controller,	and	receives	signals	from	the	ADC,	and	sends	signals	
to	the	DAC.	The	workstaAon	is	the	user	interface,	which	has	all	the	associated	user	
interface	so=ware	and	diagnosAc	tools.	

160	



161	



This	is	an	example	of	the	main	user	interface	screens.	These	screens	are	custom	
made	by	the	user.	In	this	case,	it	is	for	the	cryogenics	plaform	at	Stanford.	The	
so=ware	is	called	MEDM.	The	signal	flow	follows	the	block	diagram	we	saw	earlier,	
with	the	ADC	on	the	le=,	the	DAC	on	the	right.	In	between,	the	sensor	signals	go	
through	some	compensaAon	filters	and	matrices.	Depending	on	the	sensor	group,	
those	signals	are	then	sent	through	some	control	filters,	then	through	some	more	
matrices	and	compensaAon	filters,	before	going	to	the	DAC.	

162	



Each	of	these	boxes	you	can	click	on	to	get	more	detail.	Let’s	take	a	look	inside	the	
OSEM	prefilters	(or	compensaAon	filters).	

163	



Here	you	see	a	list	of	6	filter	modules,	1	for	each	of	the	6	OSEMs.	

164	



Let’s	focus	on	just	one.	This	is	the	standard	LIGO	filter	module	medm	screen,	which	is	
automaAcally	generated	for	each	realAme	filter	in	the	control	system.	Signals	come	in	
on	the	le=,	go	through	a	selecAon	of	10	possible	filters	banks,	and	then	output	on	the	
right.	You	can	also	apply	test	excitaAons,	offsets,	gains,	saturaAon	limits,	and	flip	
various	switches	on	and	off.	Here,	since	this	is	a	compensaAon	(or	calibraAon)	filter,	
the	2nd	filter	bank	is	engaged	which	converts	the	raw	OSEM	signal	from	units	of	
counts	to	microns.	

165	



Let’s	now	move	along	the	signal	path	and	look	inside	the	OSEM	sensor	matrix	
transformaAon.	

166	



We	see	a	6	by	6	matrix,	that	converts	the	OSEM	signals	into	an	X,	Y,	Z	coordinate	
from	around	the	plaform’s	center	of	mass,	from	the	original	locaAons	of	the	OSEMs.	
3	of	the	OSEMs	measure	the	horizontal	displacement	of	the	3	corners	of	the	
plaform;	the	other	3	measure	the	verAcal	moAon	of	those	3	corners.	For	example,	to	
get	Z,	or	verAcal	moAon	of	the	center	of	mass,	we	simply	take	the	average	of	the	3	
verAcals:	(V1+V2+V3)/3.	

167	



To	load	filters	into	the	filter	banks	of	the	filter	module	screen,	we	use	an	interface	
called	foton.	

168	



There	are	various	opAons	for	entering	filters.	A	simple	one	is	the	ZPK	opAon,	which	
stands	for	zero,	pole,	and	gain	(the	name	zpk	is	consistent	with	matlab	notaAon).	
With	this	zpk	opAon,	you	simply	type	in	the	values	for	all	the	zeros	and	poles	for	each	
of	the	10	possible	filter	banks.	Each	bank	can	hold	up	to	20	zeros	and	poles.	

169	



Once	you	have	created	a	filter,	you	can	plot	it	to	make	sure	it	looks	the	way	you	
expect.	This	parAcular	example,	is	rather	complicated.	However,	this	is	the	beauty	of	
digital	controls,	it	is	easy	to	make	an	arbitrary	filter	just	by	typing	in	the	values.	
Analog	filter	like	this	would	require	a	very	complicated	circuit,	and	be	very	difficult	to	
modify.	

170	



A=er	the	filter	is	loaded	into	foton,	just	hit	the	load	coefficients	bu?on	on	the	filter’s	
medm	screen,	and	this	updates	the	screen.	

171	



All	the	medm	screens	are	just	user	interfaces	for	the	realAme	code	running	on	the	
front-end	computer.	This	front-end	code	is	generated	by	simulink	diagrams	(through	
matlab),	which	define	everything	about	the	control	system’s	signal	flow.	It	is	here	
where	you	decide	where	the	filters	and	matrices	go.	You	can	also	setup	any	kind	of	
logic	or	install	C	code	to	do	what	is	infeasible	in	simulink	alone.	
	
Here	we	see	the	same	basic	signal	flow	again.	The	ADC	is	represented	on	the	le=,	the	
DAC	on	the	right.	There	is	a	CRYO	block	in	the	middle	that	contains	all	the	real-Ame	
so=ware	for	the	stanford	cryo	plaform.	

172	



Once	you	have	the	simulink	diagram	the	way	you	like	it,	you	compile	it	to	C	code,	
which	is	what	actually	runs	on	the	front-end	computer.	

173	



If	you	look	inside	the	CRYO	block,	you	see	many	more	sub-blocks.	Each	block	we	saw	
on	the	main	MEDM	screen	has	a	corresponding	block	here.	

174	



If	you	go	into	one	of	the	sub-blocks,	for	example	the	OSEM	sensor	compensaAon	
filters,	you’ll	see	a	set	of	filter	modules.	Each	of	these	filter	modules	has	a	
corresponding	medm	filter	module	medm	screen,	which	we	saw	earlier.	

175	



For	making	measurements,	2	of	the	most	common	(though	not	only)	so=ware	tools	
are	DTT	and	Dataviewer.	

176	



DTT	is	capable	of	both	passive	and	acAve	(send	excitaAons)	measurements.	Here	is	an	
example	of	a	transfer	funcAon	measured	on	the	cryo	plaform	by	driving	the	
actuators	and	observing	the	sensor	signals.	

177	



ExcitaAons	are	sent	by	sesng	them	up	in	the	excitaAon	tab.	Here	we	are	sending	
white	noise,	filtered	by	a	100	Hz	low	pass	filter	(2	poles	at	100	Hz),	to	the	excitaAon	
field	of	the	CRYO_DAMP_Z	filter	module.	This	drives	the	actuators	verAcally	up	to	
100	Hz.	

178	



You	can	choose	many,	many	channels	to	observe.	Here	the	data	is	being	collected	up	
to	1000	Hz,	with	0.05	Hz	resoluAon	(BW=frequency	bin-width).	

179	



Dataviewer	is	sort	of	like	an	oscilloscope,	and	is	useful	for	watching	the	realAme,	Ame	
domain	signals.	

180	



Here	is	an	example	of	2	signals	being	monitored	in	realAme	with	Dataviewer,	with	
the	sesngs	shown	on	the	previous	slide.	

181	



Dataviewer	can	also	plot	trends	from	past	data.	

182	



Here	is	the	trend	data	plo?ed	from	the	sesng	shown	on	the	previous	slide.	It	
includes	1	day	of	data,	with	1	minute	trends.	For	each	minute	there	are	3	data	points	
displayed,	the	average	in	red,	the	max	value	in	black,	and	the	min	value	in	green.	You	
can	do	trends	with	1	second	resoluAon,	1	minute,	10	minute,	and	1	hour.	You	can	
also	look	back	at	the	raw	data.	

183	



This	part	of	the	lecture	discusses	digital	control	theory.	All	the	control	theory	we	
spoke	of	up	to	now	is	for	conAnuous	linear	systems.	Strictly	speaking,	sampled	digital	
systems	are	not	linear,	so	the	same	control	theory	does	not	apply.	In	most	cases,	the	
sample	rates	we	use	are	fast	enough	that	linear	control	theory	is	a	very	good	
approximaAon,	and	may	be	used.	Thus,	in	most	cases	you	won’t	need	what	is	shown	
here.	You	may	need	it	if	you’re	pushing	your	control	close	to	the	Nyquist	frequency.	
In	any	case,	it	is	good	to	be	familiar	with	it	because	this	represents	what	is	actually	
going	on	in	the	realAme	computer.		

184	



ConAnuous	Ame	filters	can	be	converted	to	digital	Ame.	This	is	done	by	taking	a	
conAnuous	Ame	differenAal	equaAon	and	converAng	it	to	a	digital	difference	
equaAon,	the	digital	Ame	analog	for	an	equaAon	of	moAon.	To	do	this,	you	make	a	
sample	based	approximaAon	for	the	derivaAve.	

185	



To	generate	the	frequency	domain	filter,	we	use	the	digital	Ame	analog	for	the	
Laplace	transform,	the	z-transform.	The	Laplace	transform	does	not	apply	because	
the	system	is	no	longer	linear.	The	Laplace	transform	gives	you	an	s	for	every	derivate	
(1/s	for	integrals);	the	z-transform	gives	you	a	z	for	every	future	sample	(z^-1	for	past	
samples).	

186	



Here	is	a	table	comparing	digital	Ame	to	conAnuous	Ame.	In	digital,	we	have	
difference	equaAons.	In	conAnuous,	we	have	differenAal	equaAons.	

187	



Digital	has	the	z-transform	for	the	frequency	domain,	conAnuous	has	the	Laplace	
transform	for	the	frequency	domain.	

188	



Transfer	funcAons	have	the	z	variable	in	the	digital	domain,	and	the	s	variable	in	the	
conAnuous	domain.	

189	



Adding	another	row,	while	in	the	conAnuous	domain,	s	relates	to	frequency	by	
s=i*2*pi*frequency,	in	the	digital	domain,	z	=	exp(i*2*pi*frequency/
SamplingFrequency).	

190	



Note,	that	as	the	sampling	frequency	becomes	very	large,	z	starts	to	look	more	like	s	
(normalized	by	the	sampling	frequency).	In	general,	as	the	sampling	frequency	
becomes	large,	the	digital	and	conAnuous	domains	converge	to	the	same	soluAon	
(modulo	some	scale	factors).	

191	



In	the	conAnuous	domain,	we	have	the	complex	plane,	in	the	digital	domain	the	
complex	unit	circle.	This	slides	shows	the	same	low	pass	filter	in	its	digital	and	
conAnuous	Ame	equivalents.	

192	



For	stable	conAnuous	systems,	poles	must	be	in	the	le=	half	plane	(LHP).	For	digital	
systems,	the	poles	must	be	inside	the	unit	circle.	

193	



If	we	increase	the	sample	rate,	we	see	the	digital	pole	moves	closer	to	the	z	=	1	point.	
I	have	increased	the	sample	rate	a	factor	of	10	here.	

194	



As	the	sample	rate	approaches	infinite,	it	turns	out	that	the	region	around	z	=	1	
approximates	the	conAnuous	Ame	complex	plane	(modulo	some	scale	factors).	This	
visualizes	why	conAnuous	control	theory	may	be	used	when	we	have	sufficiently	high	
sample	rates.	In	general,	a	rule	of	thumb	for	a	sufficiently	high	sample	rate	is	one	that	
is	2	orders	of	magnitude	higher	than	the	frequency	of	your	poles	and	zeros.	Beyond	
that	you	have	to	start	taking	into	account	the	phase	loss	from	the	AA	and	AI	filters,	as	
well	as	the	phase	loss	from	the	sampling	itself	(there	is	a	delay	between	each	sample,	
resulAng	in	a	frequency	dependent	phase	loss,	see	this	lecture’s	backup	slides).	

195	



I	showed	a	very	simple	conversion	from	conAnuous	Ame	to	digital	Ame	when	I	
introduced	the	difference	equaAons	(the	simple	derivaAve	approximaAon).	Matlab	
has	a	number	of	be?er	conversions	(in	fact	the	one	I	showed	is	so	naïve	matlab	
doesn’t	even	list	it	as	an	opAon).	These	conversions	are	done	in	Matlab	with	the	c2d	
command	(conAnuous-to-digital).	The	command	inputs	are	the	conAnuous	Ame	
system,	the	sample	Ame	(in	seconds),	and	the	type	of	conversion.	The	third	input	is	
opAonal,	it	defaults	to	‘ZOH’	(zero-order-hold)	if	not	included.	

196	



Here	are	some	bode	plots	of	those	c2d	conversions,	plo?ed	against	the	conAnuous	
filter	in	blue.	The	red	one	is	the	naïve	basic	derivaAve	approximaAon	one	I	introduced	
with	the	difference	equaAons	(that	matlab	doesn’t	even	include).	

197	



Here	are	some	more	bode	plots	of	those	c2d	conversions,	plo?ed	against	the	
conAnuous	filter	in	blue.	

198	



199	



200	



This	is	a	more	realisAc	representaAon	of	how	the	sampling	actually	occurs	in	LIGO	
systems.	Because	analog	AA	and	AI	filters	are	very	simple	(typically	a	single	pole),	
there	phase	loss	extends	to	very	low	frequencies.	So	what	we	do	is	we	sample	at	a	
much	higher	frequency	then	what	we	actually	need,	so	we	can	push	the	poles	of	the	
analog	filters	higher	in	frequency.	This	minimizes	the	phase	loss	at	the	frequencies	
we	care	about.	At	the	sites,	all	systems	are	sampled	at	65536	Hz,	while	the	control	
systems	run	at	4096	Hz	for	the	ISIs	and	16384	Hz	for	the	suspensions.	The	control	
systems	need	to	run	at	the	slower	rate	because	they	need	sufficient	Ame	to	do	all	the	
necessary	computaAon	in	each	clock	cycle.	To	bridge	the	gap	between	the	fast	
sampling	of	the	ADC	and	slow	sampling	of	the	control	system,	we	use	digital	AA	and	
AI	filters.	Since	these	are	digital,	it	is	easy	to	make	these	with	many	poles	and	zeros	in	
order	to	opAmize	their	phase	loss	and	filtering	properAes	as	much	as	possible.	The	
next	slide	shows	the	digital	AA	and	AI	filter	used	for	the	ISIs.	

201	



This	is	the	digital	AA	and	AI	filter	used	for	the	ISIs	(same	filter	for	both).	It	bridges	the	
gap	between	the	65536	Hz	sampling	of	the	ADC	and	DAC	and	the	4096	Hz	sampling	
of	the	control	system.	This	would	require	a	relaAvely	complex	circuit	design	to	realize	
with	analog	components.	

202	



Sampling	causes	a	phase	delay	because	you	must	wait	for	the	next	sample	Ame	
before	the	control	system	updates.	This	phase,	in	degrees,	is	–360*frequency/
(sample	frequency);	that	is	just	the	Ame	between	samples	converted	into	phase	for	a	
given	frequency.	Note,	you	will	have	addiAonal	phase	loss	from	both	the	anA-alias	
and	anA-imaging	filters.	

203	



Example	medm	screen	for	an	isolaAon	block.	Note	the	guardian	states	on	the	right.	

204	



205	



206	



207	



208	



209	



210	



211	



212	



213	



214	



215	


