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ABSTRACT
In 2015, the Þrst direct detection of gravitational waves (GWs) was realized with the advanced Laser

Interferometer Gravitational Wave Observatory (aLIGO). With the detection emerged the ability to
test General Relativity (GR) in large velocity, highly dynamical and strong-Þeld gravity regimes. If
GWs were to reveal deviations from GR, the deviations would be extremely small; characterizing and
reducing uncertainties in aLIGO data would allow as much physical information to be recovered in
the GW signal as possible. The intent of this project is twofold: to describe the calibration methods
and uncertainties used for aLIGO and to also begin the discussion on the impact of calibration errors
on precision tests of GR. We Þrst describe the current calibration methods for aLIGO and the most
important calibration error sources. Then, in a model, we generate GW signals with a non-GR
deviation in the merger-ringdown regime. We recover the deviation through Bayesian parameter
estimation to determine the precision with which such deviations can be detected. We conclude
with discussing how new calibration error models could increase that precision, and include a more
sophisticated model setup in the Appendix.

I. INTRODUCTION

In 1915, Einstein published his General Theory of Rel-
ativity (GR). This theory and his following papers pre-
dicted the existence of gravitational waves (GWs), or
oscillations in the curvature of spacetime caused by the
acceleration of massive bodies. In 1993, a Nobel Prize
went to Hulse and Taylor [8] who discovered a pulsar
system losing energy at the same rate as predicted by
GW emission and thus providing strong observational ev-
idence for the existence of GWs. Then in 2015, a direct
detection of a GW occurred. GW150914, identiÞed as a
result of a binary black hole merger, was observed with
the Advanced Laser Interferometer Gravitational Wave
Observatory (aLIGO) detector network [2]. With this
detection, the Þeld of direct GW observations emerged.

GWs allow us to observe strong-Þeld dynamics of
space-time and astrophysical phenomena inaccessible by
electromagnetic radiation. With the direct detection of
GWs, experiments to test GR in large velocity, highly
dynamical, and strong-Þeld gravity regimes can be con-
ducted. Because GWs cause extremely small deviations
in spacetime (on the order of 10! 23 [2]) the aLIGO sen-
sors and signal analyses need to be precise. Characteriz-
ing and reducing uncertainties in aLIGO data allows us
to extract as much physical information from the GW
signal as possible.

The goals of this work are to (1) describe both the cal-
ibration methods used for aLIGO and their uncertainties
and (2) begin the discussion on the e!ects of this calibra-
tion uncertainty on precision tests of GR. It is unknown
how large non-GR deviations in GW signals may be if

they exist, and consequently whether the calibration er-
rors (CEs) in aLIGO are large enough to disguise any
of these non-GR deviations, which that may otherwise
be revealed by stacking many GW signals (a technique
discussed in Section V). If they are great enough, it is un-
known if implementing a calibration error model would
reduce the CE impact enough to see these non-GR devia-
tions. So we begin the discussion of the e!ects of calibra-
tion uncertainty on precision tests of GR by developing
a model in which we introduce a parametrized devia-
tion from the GR-predicted GW waveform in the merger-
ringdown regime. Then we attempt to recover the devia-
tion through Bayesian parameter estimation. We suggest
next steps in this investigation, including implementing
a frequency dependent calibration error model to see its
impact.

The layout of this paper is as follows. First, we spec-
ify our focus on CEs in Section II. Next, we summarize
how aLIGO detects GW and how these CEs impact the
instrument in III. In IV, we describe the di!erential arm
length (DARM) closed feedback loop transfer function,
which contains the GW wave signals and CEs for aLIGO.
We then describe our model in VI. We discuss next steps
in VII and a more sophisticated modeling in X.

II. CALIBRATION ERRORS

Two sources of uncertainty in any instrument are
statistical and systematic uncertainty. Statistical
uncertaintyÑ a zero-mean Gaussian distribution mea-
surement variationÑ is unavoidable, but it can be re-
duced by taking additional measurements. Systematic
uncertainty stems from an incorrect characterization of



2

a detector, resulting in, for example, calibration errors
(the dominant source of systematic error in aLIGO). For
aLIGO, careful calibration has to be maintained to ac-
curately associate the frequency response of the detector
with the motion of aLIGOÕs optics to reduce systematic
error. These systematic/calibration errors are the focus
of this project.

For aLIGO, calibration errors (CEs) are errors that
pertain to the conversion of instrumental readout to GW
strain data and are contained in a di!erential arm length
(DARM) control loop. CEs can a!ect detection rates
and parameter estimations; here we are concerned with
parameter estimation. Current CEs for aLIGO are es-
timated as a correction to the amplitude and phase re-
sponse of the detector, as an (assumed smooth) function
of frequency. The detector response is, to a very good ap-
proximation, linear: GWs at a particular frequency ap-
pear in the detector response only at that frequency. A
new, functional frequency dependent estimation method
[15, 19] is discussed in Section X.

This work uses a Bayesian approach to quantify po-
tential CE e!ects on signal injections which mimic both
GR and non-GR conforming GWs. It is possible that the
CEs will blur our ability to distinguish between the two;
we also investigate if our frequency dependent method
of characterizing CEs will allow us to distinguish the
GR and non-GR conforming signal injections. Though
the few individual GW signals detected so far have had
no statistically signiÞcant disagreement with GR and
their statistical error exceeds their systematic error, the
aLIGO detectors are not yet at their design sensitivities,
louder GW sources may yet be detected, and the poten-
tial to combine or ÒstackÓ GW observations as in [16] to
increase sensitivity all encourage this work [4].

III. HOW LIGO DETECTS GWS

aLIGO is a complex and cutting edge instrument;
it consists of a modiÞed Michelson interferometer with
Fabry-Perot arms, power-recycling mirrors, and resonant
sideband extraction which all allow it to measure mi-
nuscule phase propagation di!erences via the Pound-
Drever-Hall technique [7, 10, 12]. However, we follow
[19] in this analysis and reduce the entire instrument to
a sensor with a single degree of freedom: di!erential arm
length (DARM) deviations. When a GW passes through
aLIGO, the space in one direction stretches while the
space in the other direction contracts; this arm length
change/deviation interrupts the constructive interference
of laser light maintained in the arm cavities and some
light escapes the arms to a photodetector (see Figure
1). This escaped light generates the signal we analyze to
recover the GW parameters.

Figure 2 illustrates a waveform that aLIGO might de-
tect. From the amplitude and phase of this waveform, we
can extract astrophysical parameters such as those listed
in Table 1.

In this work, we focus on a single-parameter analysis
in the merger-ringdown regime to test GR using multiple
events, rather than characterizing a particular GW event.
Consequently, we marginalize over the parameters listed
in Table 1.

IV. DARM FEEDBACK CONTROL LOOP

Fig. 1.Ñ This diagram of aLIGO is from [15]. The arm cavities
are contained between the reßective test masses. These test masses
are suspended from a quadruple pendulum system and are adjusted
spatially by an actuating system displayed in the upper right panel.
These adjustments allow resonance to be maintained in the arm
cavities. When resonance is disrupted by a passing GW stretching
one arm cavity and shrinking the other, some light escapes to the
GW Readout Port at the bottom of the Þgure.

Fig. 2.Ñ A Þgure illustrating an inspiral-merger-ringdown (IMR)
of a compact binary system from [2]. According to GR, two ob-
jects in orbit will slowly spiral inwards due to a loss of energy and
angular momentum via GWs. The frequency and amplitude of the
emitted GWs increases as the orbital distance between the objects
shrinks. When the objects Þnally merge they can radiate GWs as
a superposition of quasinormal ringdown modes. One mode will
eventually dominate with a exponentially damped, constant fre-
quency wave [4]. We observe this as a lower frequency inspiral
phase, a post-merger peak at some Þxed frequency, and then a
higher frequency ringdown. In this work we investigate the dif-
ferences due to non-GR conformity as described in a parameter
pertaining to the merger and ringdown of the GW.
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TABLE 1
Parameters used to characterize a GW detection.

m1 ,m2 Masses
q Mass ratio

M c Chirp Mass
S1 ,S2 Spins
�eff E!ective inspiral spin parameter
DL Luminosity Distance
tc Coalescence time
�i Phase of coalescence
↵, � Sky location
cos◆ Orbital orientation
 Polarization angle

The external di!erential arm length change, " L
free

,
is related to the GW amplitude, called the Òstrain:Ó

h(f ; t) =
" L

free

!L "
(1)

where !L " # 4000m is the arm cavity length of
aLIGO. aLIGOÕs photodetector does not directly mea-
sure " L

free

but rather the current generated from the
carrier laser power ßuctuations,d

err

(the DARM error
signal), in arbitrary units. " L

free

must be reconstructed
from d

err

(f ).
d

err

(f ) is measured continuously in a closed feedback
loop. The purpose of this feedback loop (see the re-
duced block schematic in Figure 3) is to recenter the
mirrors used in aLIGO after the arms have been per-
turbed by a GW or noise so that the constructive inter-
ference/resonance of the laser is maintained. This allows
the instrument to remain in the constant linear response
regime, and measure the next arm length di!erential as
quickly as possible.

We can reconstruct h(f ; t) from the DARM control
loop (see Figure 3):

!L "h(f ; t) $ " L
ctrl

= " L
res

(2)

h(f ; t) =
1

!L "

✓
1

C(f ; t)
D (f )d

err

+ A(f ; t)d
ctrl

◆

(3)

h(f ; t) =
1

!L "

✓
1 + G(f ; t)

C(f ; t)
d

err

◆
(4)

h(f ; t) =
1

!L "
R

e

(f ; t)d
err

(5)

where R
e

(f ; t) =
1 + A(f ; t)D (f )C(f ; t)

C(f ; t)
(6)

=
1 + G(f ; t)

C(f ; t)
(7)

Here, C(f ; t) is the transfer function of the arm cav-
ity or the sensing function, D (f ) is a digital Þlter, and
A(f ; t) is the actuation function that corrects mirror
position. d

ctrl

is the signal sent to the actuators de-
scribing how to move the test masses to recover reso-
nance, " L

ctrl

is the length deviation the actuation func-
tion applies to the test masses, and "L

res

is any resid-
ual length change the actuation function happens to
not correct. The product of these transfer functions is
G(f ; t) = C(f ; t)D (f )A(f ; t), the DARM open loop gain.
We further rearrange this equation into a response func-

Fig. 3.Ñ A block diagram of the DARM feedback control servo
from [15]. This schematic shows that aLIGOÕs output is dependent
on the performance of the feedback loop. Each component of the
feedback loop is described by a transfer function and the uncer-
tainty on the overall loop transfer function yields the CEs on the
GW strain detection. The transfer functions of all of the compo-
nents in the feedback loop are necessary to reconstruct the GW
signal. The subsystems are described more thoroughly in [15, 19].

tion, R
e

(f ; t), which lets us estimate uncertainty more
easily. D (f ) is known precisely, so the uncertainty in our
GW strain, !

h

(f ; t), is dominated by the uncertainty in
R

e

(f ; t): !
R

(f ; t). Equation 7 is derived and its com-
ponents described more thoroughly in [19, 15]. More
complex calibration loop treatments are given in [1, 13].

In equation 5, R
e

(f ; t) gives the theoretical or ex-
act response function, but the measured length func-
tion R

m

(f ; t) includes CEs from the sensingC(f ; t) and
actuation A(f ; t) functions as well as the slow, time-
dependent drift in these functions. Because detectors
are noisy, drift with time, and can glitch, R

e

(f ; t) and
R

m

(f ; t) can di!er. This leads to systematic errors in
GW strain reconstruction.

The frequency dependent and time dependent param-
eters of R(f ; t) are what impact the response function
uncertainty, !

R

(f ; t). We examine these parameters for
C(f ; t) and A(f ; t).

IV.I. Sensing Function, C(f ; t)

The sensing function (see Figure 4) ÒsensesÓ GW
strain. It represents the interferometer optical plant and
is approximated by a coupled-cavity single pole function
[9]:

C(f ; t) =
"

C

(t)C
R

(f )
1 + if /f

CC

(t)
e! 2!if " C (8)

"
c

(t) : optical gain
fcc(t) : coupled cavity pole frequency
C

R

(f ) : Òsensing residualÓ after cavity
pole is divided out

#
C

: sensing function time delay

The optical gain "
c

(t) depends on the laser power in
the optical arm cavities and has a time dependent scalar
gain factor. Equation 7 indicates R

e

(f ; t) # 1/C (f ; t)
when |G(f ; t)| << 1. Changes in the optical gain pro-
duce the largest systematic errors at frequencies above
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Fig. 4.Ñ Figure from [15]. The sensing function model is shown
in magnitude (top) and phase (bottom). The frequency depen-
dence of C(f ; t) is determined by fcc up until 1 kHz; afterwards,
analog-to-digital conversion factors (in CR(f )) dominate. The fea-
tures at higher frequencies are due to photodiode electronics and
processing Þlters [15].

the unity gain frequency (40 Hz and 56 Hz for H1 and
L1, respectively [15]). The coupled cavity pole frequency
f

cc

(t) depends on the reßectivities of the interferometer
optics and has a time dependency due to cavity length
and alignment changes [14].This changes the shape of the
sensing function at frequencies close to the nominal cou-
pled cavity pole frequencies. At high frequencies,C

R

(f )
contributes systematic errors in the magnitude of " L

free

[17].

IV.II. Actuation Function A(f ; t)

The actuation function (see Figure 5) describes the
physical actuators that spatially adjust the test masses
hung in the quadruple pendulum (see Figure 1). The
pendulum stages are labeled as follows: Top, Upper In-
termediate, Penultimate, and Test. All except for the top
stage are actuated upon and so contribute a term to the
actuation function. The Upper-Intermediate and Penul-
timate masses have Optical Sensor and Electromagnetic
(OSEM) actuators while the test mass, the mass that the
laser light hits, has a ElectroStatic Drive (ESD) actua-
tor. The ESD allows for Þner spatial adjustments but
can build up charge. Consequently, its strength changes
with time.

Fig. 5.Ñ Figure from [15]. The actuation function A(f ; t) shown
in magnitude (top) and phase (bottom), includes the actuation
functions for each pendulum stage. As frequency increases, the
dominating pendulum stage progresses to the lower pendulum
stages. Digital notch Þlters are apparent at select frequencies with
the purpose of avoiding mechanical instabilities [15].

A(f ; t) = [ "
T

(t)A
T

(f ) + "
P

(t)A
P

(f ) + "
P

(t)A
U

(f )] e! 2!if " A

(9)

"
T

(t) : ESD actuation strength
"

P

(t) : OSEM actuation strength
A

T

(f ) : Test mass actuation function
A

P

(f ) : Penultimate mass actuation function
A

U

(f ) : Upper-Intermediate mass actuation function
#

A

: computational time delay in
digital-to-analog conversion

Equation 7 indicates R
e

(f ; t) # A(f ; t)D (f ) when
|G(f ; t)| >> 1. A

T

(f ) is the dominant term in A(f ; t)
for frequencies greater than 20 Hz; the largest systematic
errors contained in A(f ; t) (± 15%) are due to variations
in the actuation strength of the ESD from 20 $ 50 Hz
and are contained in"

T

(t) [17].

IV.III. Full Parametrization of the Response Function
and Real-Time Calibration Measures

With our parameters from C(f ; t) and A(f ; t), we can
rewrite our actuation function beginning with equation
7 and compensating for known time delays:

R
e

(f ; t) =
1 + A(f ; t)D (f )C(f ; t)

C(f ; t)
(10)

R
e

(f ; t) =
1

C(f ; t)
+ D(f )A(f ; t) (11)

R
e

(f ; t) =
✓

1 + if /f
CC

(t)
"

C

(t)C
R

(f )

◆
+

D(f ) ( "
T

(t)A
T

(f ) + "
P

(t)A
P

(f )"
P

(t)A
U

(f )) (12)
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The time dependent parameters
("

T

(t),"
P

(t),"
C

(t),f
CC

(t)) are monitored for varia-
tion using intentional injections at four frequencies
(called calibration lines) into the DARM spectrum
throughout an observation run (see Table 2). The
calibration lines reveal any short-term gain ßuctuations
in optical plant or actuation strengths.

TABLE 2
Calibration line table recreated from [17]. Lines 1-3 are
used to estimate T and P and line 4 for C and fc for

the LIGO Hanford (H1) and LIGO Livingston (L1)
detectors.

# Signal Freq. (Hz) Line Purpose
H1. L1

1 xT 35.9 35.3 ESD actuation strength
2 " Lpcal 36.7 34.7 DARM actuation
3 xctrl 37.3 33.7 Penultimate & Upper-

Intermediate actuation strengths
4 " Lpcal 331.9 331.3 Optical gain and coupled cavity

pole frequency

The frequency dependent parameters in our response
function (A

U

(f ), A
P

(f ), A
T

(f ), C
R

(f )) are measured
between observation runs using swept sine calibration; a
sine wave displacement signal is applied to a test mass
while the interferometer is locked. Then, the frequency
is slowly swept over the GW detection band and the er-
ror signal is measured as a function of the displacement.
This yields the closed loop transfer function.

The interpreted GW strain will be di!erent from the
true GW strain in both phase and amplitude. As dis-
cussed in Section III, this a!ects not only the precision
measurement of astrophysical parameters like masses,
sky location, distance, and etc, but also the precision
measurement of universal parameters like those that de-
scribe variations from GR. To decrease the di!erence be-
tween the measured length function and the exact length
function, we seek to better characterize aLIGOÕs CEs
through Bayesian parameter estimation.

V. BAYESIAN PARAMETER ESTIMATION

We can compare a parametrized GW waveform model
to the detected strain signal, using a matched Þlter-
ing technique with template banks, further described
in [6]. It is an accurate and time sensitive method to
identify potential GWs from compact binary coalescence
(CBC). Figure 2 shows the GW waveform model used
for GW150914.

With the matched Þltering results, we can construct
probability density functions (PDFs) for each of the pa-
rameters in the GW detection. To be explicit, we begin
with BayesÕ theorem; the probability that a parameter,
$, is the correct value given some data,x, is equal to
the probability of getting the data given the parameter
times the prior probability that the parameter is the cor-
rect value, and divided by the evidence of the data:

P($|x) =
P(x|$) %P($)

P(x)
(13)

Here, P($|x) is the posterior probability, P(x|$) is the
likelihood, P($) the prior, and P(x) =

R
P(x|$)P($)d$

the evidence.

We can then express the probability that the strain
data x(f ) came from an astrophysical system with pa-
rameter $ with the log-likelihood, ln P(x|$):

ln P(x|$) = $ 1/ 2
Z "

0

|h(f, $ ) $ x(f )|2

S
nn

(f )
(14)

wherex(f ) is the strain data from the detector, h(f, $ )
is the GR prediction for the strain with parameter $,
and S

nn

(f ) is the power spectral density of the detectorÕs
strain noise.

We can update this probability as more data becomes
available. We can ÒstackÓ GW observations like so:

P($|x, y) =
P(x, y|$) %P($)

P(x, y)

=
P(y|$, x) %P($|x)

P(x, y)
Substitute in Eqn. 13

=
P(y|$) %P(x|$) %P($)

P(x)P(y)
(15)

Assuming GWs are uncorrelated the
probability of y does not depend onx

where P($|x, y) is the posterior probability that $ is the
correct value given that x, our data or a GW detection,
and y, new data or another GW detection, exist. The
normalization constants of these models are typically ig-
nored in favor of simply comparing two competing mod-
els. This model selection (rather than parameter esti-
mation) involves taking the ratio (called the odds ratio)
of posterior probabilities to the evidence/potential GW
signal:

O
i,j

=
P(H

i

|x)
P(H

j

|x)
B

ij

(16)

whereH
i

is some hypothesis and is compared to another
hypothesis,H

j

. The Bayes factor or evidence ratio,B
ij

,
is the ratio of likelihoods between the models. It is often
used as a statistic to describe conÞdence in the correct-
ness of a model or to rank competing hypotheses given
the observed data. From equation 15 we see that as we
amass new GW detections we update the probability by
multiplying the posterior probability distributions for $
for each event together. For an arbitrary number of de-
tections, the probability of the parameter is then given
by:

P($|x
i

) &

"
Y

i

P(x
i

|$)

#
%P($) (17)

Stacking GW strain signals in this way can constrain
parameter estimation better than a single detection can.
For computational simplicity, we limit our model to one
parameter.

VI. THE MODEL

Though up to 100Õs of observations per year are ex-
pected by the time LIGO operates at design sensitivity
[3], only two GW detections have been published as of
the time of this paper. For now, we use simulated GW
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Fig. 6.Ñ The unaltered GW151226 template (above),
available from https://losc.ligo.org/s/events/GW151226/LOSC_
Event_tutorial_GW151226.html , and the windowed template (be-
low).

Fig. 7.Ñ A smoothly damped ringdown

signals instead of real GW signals. GW waveform mod-
els are based on an analytical inspiral-merger-ringdown
(IMR) model (see Figure 2)

Our model begins with the GW151226 template win-
dowed with a Tukey/tapered cosine window to remove
e!ects at the beginning and end of the template (See
Figure 6). We modiÞed a copy of the template to create
the base for our mock data by smoothly decreasing the
amplitude of the ringdown (see Figure 7) by 50% with a
logistic function. This represents a possible non-GR de-
viation in our GW template. We then created 550 tem-
plates of these smoothly damped in ringdown templates
in order to populate a template bank for match Þltering.
We additionally scaled these templates by mass, follow-
ing a m! 1 power law from 5 to 45M # (See Figures 8 and
9).

Returning to our original ringdown damped template,
we added colored (frequency-dependent) noise to achieve
a mock signal (see Figure 10). The mock signal strength

Fig. 8.Ñ The mass distribution sampled from to scale the tem-
plates and generate mock data.

Fig. 9.Ñ A resulting scaled ringdown. Note that a higher total
mass results in both a larger amplitude and oscillations with longer
periods.

was chosen via sampling from an SNR! 4 distribution (see
Figure 11).

We then run our mock data through match Þltering
against our template bank to generate PDFs for the non-
GR parameter for di!erent SNRs, noting which tem-
plates were returned as the best Þts (see Figure 12).
Next, we stacked our observations by multiplying the
posteriors (assuming a ßat prior). After renormalizing
the PDFs, we measured their variance to represent our
uncertainty of the parameter measurement and plotted
that uncertainty against the number of events stacked
(see Figure 13)

VII. NEXT STEPS

The most immediate next step in this project is cor-
recting the tapering of the waveform; we used a Tukey
window to remove e!ects at the beginning and end of
the template, though the end of the template already
smoothly goes to zero. This may improve our results for
lower SNR regimes.

The next priority is to run the model with more than 50
events and calculate the errors on the uncertainty mea-
surements to see if the uncertainty reaches a constant
value above 50 stacked events, as hinted by Figure 13.

Afterwards, adding a CE to the mock data represent-
ing optical gain uncertainty error along with a CE model
would allow us to see if the non-GR deviation is recov-
erable. Repeating this for very low SNR (' 10) would
give us a more realistic representation of our ability to re-
cover non-GR deviations in the face of CE errors. Once
this is implemented, we can test ideas such as: What
calibration accuracy do we need before statistical error
dominates for one event? For hundreds of events? With
a calibration error included, how well can we constrain
that parameter? How well should we measure the pa-
rameter for N events?

The answers to such questions will inform us in
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Fig. 10.Ñ The original modiÞed template (top) followed by
the template with white/Gaussian noise (middle) and Þnally col-
ored/frequency dependent noise (bottom).

Fig. 11.Ñ The SNR distribution from which the SNR for our
mock data was generated.

our estimation of the impact of aLIGO calibration
uncertainty on precision tests of GR using observations
of GWs from BBH mergers. Additionally, they will
direct us to the most important questions to ask of
more sophisticated models of calibration, such as that
described in Section X.

VIII. CONCLUSION

Fig. 12.Ñ The SNR returned by the matched Þltering function
versus the deviation of the amplitude of the merger and ringdown
with respect to the prediction from GR. The predicted amplitude
is marked by the red dashed line.

Fig. 13.Ñ The uncertainty in the non-GR parameter measure-
ment versus the number of events. It looks as if the uncertainty
reaches a constant value above around 50 stacked events, but more
runs would clarify the result. Next steps with this model include
runs with more than 50 events and the calculation of errors on
these uncertainty measurements.

We provided an overview of the calibration methods
used for aLIGO and their uncertainties, describe how
aLIGO detects GWs, and how CEs in the DARM closed
feedback loop transfer function impact our detections.
We presented a model that generates mock data, match
Þlters, stacks observations, and uses Bayesian parameter
estimation to begin to explore the e!ects of calibration
uncertainty on precision tests of GR. We suggested next
steps in the investigation, including the implementation
of a frequency-dependent calibration error model and a
more sophisticated model set up in Section X.

The Þrst GW has only recently been detected; the uni-
verse as illustrated by GWs is an emerging perspective
in astronomy. Observing things in the universe for the
Þrst time is exciting and impactful, but veriÞcation that
the detection data are accurate is vital. Publishing un-
certain/inaccurate detections can confuse and delay our
understanding of the universe. Consequently, good cal-
ibrations of instrumentation is essential if we are to be
conÞdent about collected data and use it to understand
how our universe works. Though only two GW detections
have been observed, many more expect to be seen in the
future. Analyzing our calibration uncertainties and their
impact on important questions like the existence non-GR
deviation now will help us prepare our instrumentation
for the next leg of direct GW detection astronomy.
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X. APPENDIX

A more sophisticated investigation into the impact of
CEs on precision tests of GR could use the the param-
eter estimation pipeline LALInference [18] and TIGER
[5], a data analysis pipeline for testing the strong-Þeld
dynamics of GR with GW signals.

In this section, we outline astrophysical and calibra-
tion parameter estimation using LALInference and we
describe the software signal injections used to mimic GR
and non-GR conforming GW signals inTIGER.
LALInference compares a parametrized GW wave-

form model to the detected strain signal, using the
matched Þltering technique described in Section V. Sec-
tion V. Using LALInferenceÕs results, we can construct
PDFs for each of the parameters in the GW detection,
and stack them to increase our SNR, as also described in
described in V, but for all parameters instead of one.

However, Bayesian inference tends to be computa-
tionally expensive, especially with a large number of
parameters (15 for the most simple compact binary
merger models, excluding instrumental and calibration
parameters, see Table 1). It additionally has complex
multi-modal likelihood functions, and the computation-
ally costly process of generating the model waveforms
[18]. As a result, stochastic sampling techniques, like
Markov Chain Monte Carlo (MCMC), Nested Sampling,
and MultiNest/BAMBI, have been explored and de-
veloped for Bayesian inference for GW data and have
been packaged intoLALInference to speed up the pro-
cess. This work could use the Nested Sampling routine
LALInference nest, for example.

CEs, as discussed previously, will introduce bias in
the posterior distributions of the measured parame-
ters. LALInference currently uses a spline-Þtted CE
model, but a new frequency-dependent CE model is be-
ing developedÑ a comparison between the e!ectiveness
in parameter retrieval of two CE models is one possible
next step.
TIGER could be used for generating the common non-

GR parameter. TIGER (Test Infrastructure for GEn-
eral Relativity) is a data analysis pipeline for model-
independent testing the strong-Þeld dynamics of general
relativity with GW signals [5]. It relies on Bayesian
model selection to combine information from multiple ob-
servations. It then compares the stacked data evidence
between two hypotheses: a GW waveform model consis-
tent with GR, H

GR

, and a model with parametrized de-
formations of the GW waveform model,H

modGR

, as given
by additional parameters. TIGER uses an odds ratio to
compare these models:

OmodGR

GR

(
P(H

modGR

|d, I )
P(H

GR

|d, I )
(18)

where d is the data and I is our prior.
This method is considered model independent because

any/all of the additional parameters are allowed to vary

Fig. 14.Ñ Figure from [15]. Di!erences in model and measured
R(f ; t) result in correction factors, 1 + �R(f ; t)/R(f ; t), shown in
magnitude (upper) and phase (lower). The dashed lines show the
systematic errors, known from model parameters, and the solid
lines the total statistical uncertainty [15]. This R(f ; t) incorporates
the frequency dependent calibration model that is being developed
for LALInference .
from zero (where they agree with GR) such that many
di!erent waveforms could be well Þt. Each possible wave-
form is considered a sub-hypothesis and the Bayes factors
for all of the sub-hypotheses can be merged into a sin-
gle odds ratio with which to compare the GR consistent
model.

Detector noise ßuctuations can potentially mimic GR
violations. To allay this, the odds ratio should be com-
pared with a noisy background distribution; injecting
many simulated GW signals with di!erent astrophysi-
cal parameters into data surrounding the GW signal of
interest can accomplish this [5]. The odds ratio can then
be calculated for many GR consistent injections/noisy
background sets. Then, a distribution of the odds ratio
for GR consistent GWs can be calculated with an ac-
companying p-value. From this a threshold can be set
for non-GR conforming GW model odds ratios to over-
come.

For signal injections, LALInference pipe, part of the
LaLApps Suite [11], could be used. On such method could
be to select a section of aLIGO data free of signals, un-
due noise, or other injections, and then add' 50 GW
injections from systems with total masses of 10$ 50M #
and spins 0$ 0.99. A second set of these injections
could be constructed to share a common non-GR pa-
rameter. This would allow us to estimate how many
injections/detections are required to constrain a non-GR
parameter if one exists.

This more sophisticated analysis would be a great
follow-up to our introductory model, and would provide
better insight to how limited aLIGO is in detecting small,
non-GR deviations. Such a detection would indeed be a
very important development in physics.
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