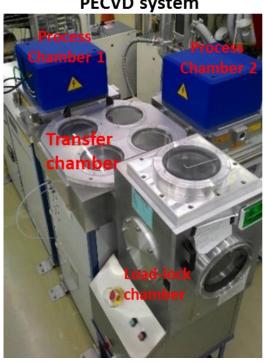


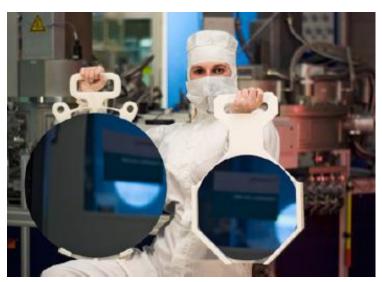
Room Temperature Mechanical Loss of Silicon Nitride-Silica Quarter-wave Stacks Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) Method

Huang-wei Pan, Ling-chi Kuo, Meng-yun Wu, Shu-yu Huang, Yu-hang Juang, Chia-wei Lee, Shiuh Chao

Principle Investigator: Prof. Shiuh Chao

Institute of Photonics Technologies,
National Tsing Hua University,
Hsinchu, Taiwan,
R.O.C.


LIGO-G1601702



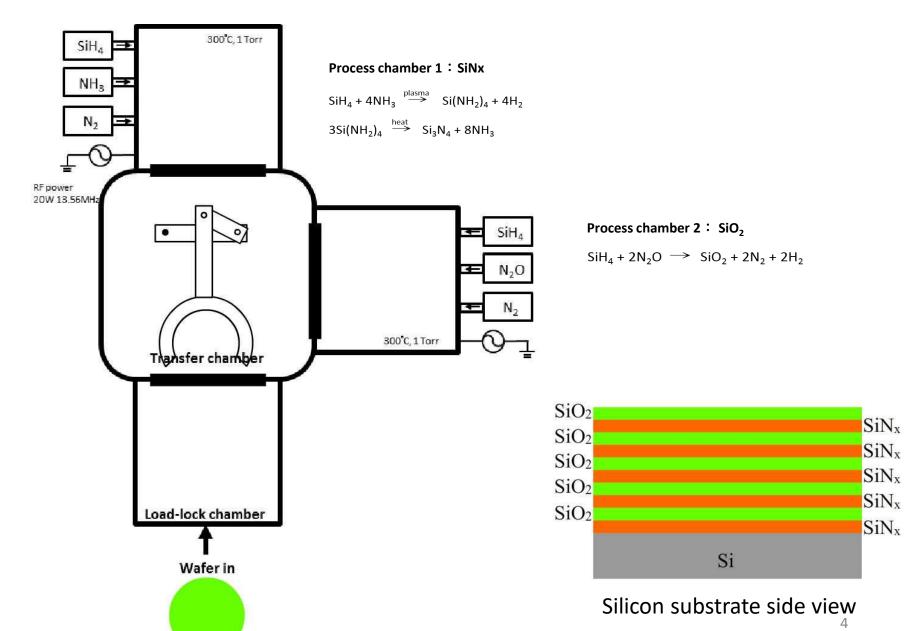
Large area uniform coating on silicon wafer up to 18" (450mm) by Plasma Enhanced Chemical Vapor Deposition (PECVD) is a common practice in silicon-IC industry

PECVD system

http://www.linx-consulting.com/pages/450mm processing.html

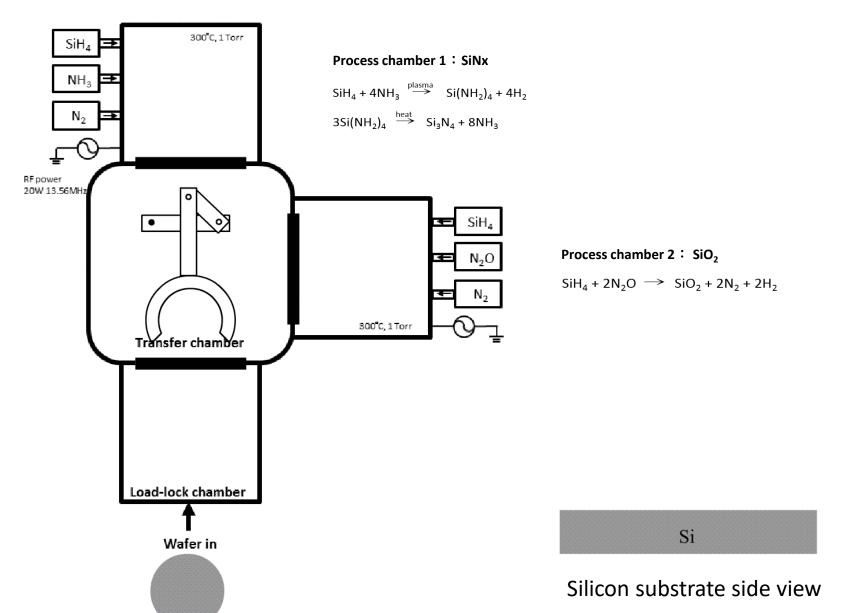
At NTHU, we are exploring mirror deposition for LIGO by using PECVD

Candidate Silicon IC-Compatible CVD Thin Films for Optical Application

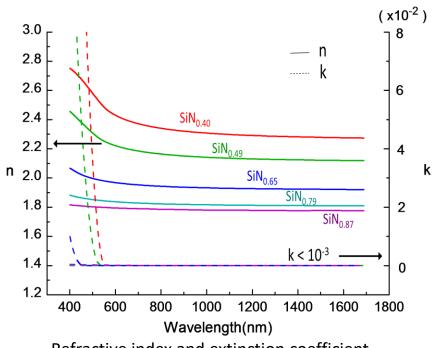

	a-Si	SiC	SiNx	SiO ₂
Refractive index @ 1550 nm	3.5 ^[1]	3.2-2.6 ^[11,12]	2.6-1.8 ^{[16][30]}	1.45 ^[19,20]
Absorption range	<700 nm ^[2]	<380 nm ^[13]	<510 nm ^[17]	<200 nm ^[21]
Young's modulus (GPa)	100 ~ 150 ^[3-5]	392 ~ 694 ^[14]	85~210 ^[16]	72~83 ^[20,22-25]
Stress [#] (MPa)	-400 ~ -900 ^[6,7]	-160 ~ -510 ^[15]	+600 ~ 1200 ^[16]	+60 ~ -257 ^[25]
Loss angle at RT	3.3x10 ⁻⁴ e beam ^[8] 5x10 ⁻⁴ sputter ^[8] 4x10 ⁻⁴ IBS ^[31] 9x10 ⁻⁵ IBS ^[10]		2 x10 ⁻⁶ high stress $^{[18]}$ 3 x10 ⁻⁴ stress relief $^{[18]}$ 7.5x10 ⁻⁵ SiN _{0.40} @107Hz 1.4x10 ⁻⁵ SiN _{0.87} @107Hz $^{[30]}$	1.49x10 ⁻⁴ 1x10 ⁻⁴ IBS ^[26-28]
Cryogenic loss peak	Depends on H ⁺ - concentration and heat treatment ^[8-10]		Depends on N- concentration (Preliminary results will be presented in poster session by Mr. Kuo)	5x10 ⁻⁴ @20K ^[29]

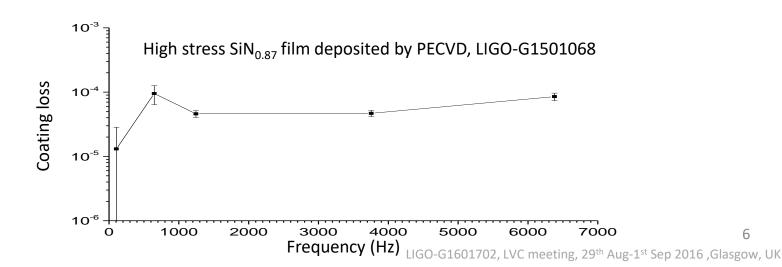
-: compressive +: tensile

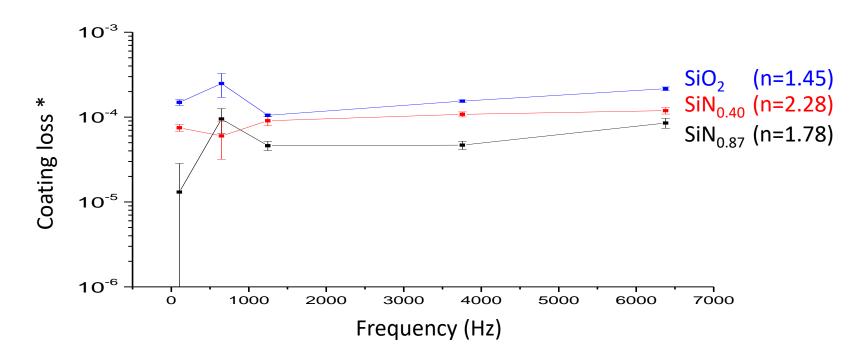
Plasma Enhanced Chemical Vapor Deposition (PECVD) for multi-layer dielectric mirror coating



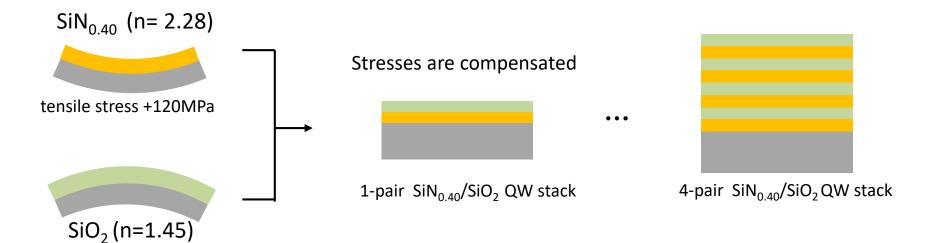
Plasma Enhanced Chemical Vapor Deposition (PECVD) for multi-layer dielectric mirror coating




What We Had Last Year for SiNx


Refractive index and extinction coefficient

Coating Loss for PECVD SiO₂, SiN_{0.40} and SiN_{0.87}

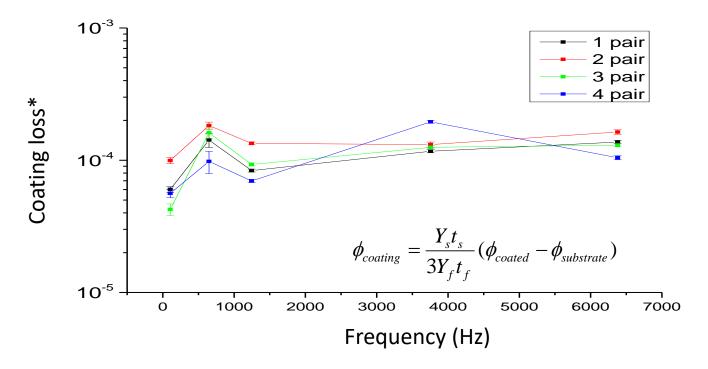

We chose SiO_2 as the low index layer and $SiN_{0.40}$ as the high index layer for quarter-wave (QW) stacks.

^{*} First two modes are bending modes and others are torsional modes. Higher order bending modes are not shown due to high fluctuation in the clamp loss.

SiN_{0.4}/SiO₂ QW Stacks

compressive stress -150MPa

material*	Refractive index# @1550nm	Young's modulus (GPa)	Stress (MPa)	Loss angle ~100Hz @ RT
SiO ₂	1.45±0.01	83.8±1.3	-158.2±6.0	(1.49±0.12) x10 ⁻⁴
SiN _{0.40}	2.28±0.01	103.7±5.6	120.2±15.5	(7.49±0.72) x10 ⁻⁵


^{*}All films are amorphous structure as deposited

We have deposited samples with 1, 2, 3 and 4 pairs QW stacks.

Coating Loss of SiN_{0.40}/SiO₂ QW Stacks Deposited by PECVD

- 1. The coating losses of 1-4 pair are in 10⁻⁵ order at 100 Hz.
- 2. The coating loss does not increase with pair number, indicating that there is no significant loss in $SiN_{0.40}/SiO_2$ interface.

^{*} First two modes are bending modes and others are torsional modes. Higher order bending modes are not shown due to high fluctuation in the clamp loss.

Conclusion

- Dual-reactor CVD in conventional silicon-IC process can be used for large area HR optical coatings.
- $SiN_{0.40}/SiO_2$ QW pairs deposited by all-CVD process showed room temperature mechanical loss in 10^{-5} at 100 Hz, lower than Ta_2O_5 -TiO₂/SiO₂ in current GW detector.
- The coating loss of $SiN_{0.40}/SiO_2$ QW stack does not increase with pair number, indicating that there is no significant loss in $SiN_{0.40}/SiO_2$ interface.

References for the table in page 3

- [1]B. J. Frey, et al, "Temperature-dependent refractive index of silicon and germanium", SPIE Conference Series, vol. 6273, p. 2, June 2006.
- [2] G. D. Cody, et al, "Disorder and the optical-Absorption Edge of Hydrogenated Amorphous Silicon", Vol. 47 No.20 PHYS REV. LETT. 16 NOVEMBER (1981)
- [3] H.W. Pan, et al, "Stress effect on mechanical loss of SiNX and α -Si film deposited by PECVD method on silicon cantilever", LVC meeting, Pasadena USA, , Mar.17th, 2015, LIGO- G1500195,
- [4] R. Kuschnereit, et al, "Mechanical and elastic properties of amorphous hydrogenated silicon films studied by broadband surface acoustic wave spectroscopy" Appl. Phys. A 61,269-276 (1995)
- [5] R. B. Wehrspohn et al, "Relative importance of the Si–Si bond and Si–H bond for the stability of amorphous silicon thin film transistors", J. APPLIED PHYSICS VOL 87, No11, JANUARY (2000)
- [6] C. K. Chung, et al "Fabrication and characterization of amorphous Si films by PECVD for MEMS", J. Micromech. Microeng. 15 (2005).
- [7] P Danesh, et al, "Mechanical stress in thin a-Si:H films", Semicond. Sci. Technol. 15 (2000) 971–974.
- [8] X. Liu et al, "low energy excitations in amorphous films of silicon and germanium", Phys. Rev. B 58, 9067 (1998).
- [9] X. Liu, et al, "Internal friction of amorphous and nanocrystalline silicon at low temperatures", Mater. Sci. Eng. 442, 307 (2006).
- [10]P. G. Murray, et al, "Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems", Phys. Rev. D 92, 062001 (2015)
- [11] J Cardenas, et al, "Optical nonlinearities in high-confinement silicon carbide waveguides", Optics Letters Vol. 40, No. 17, 2015.
- [12] M. A. Nigro et al. "Measurement of the IR absorption induced by visible radiation in amorphous silicon and silicon carbide thin films by an in-guide technique", Optical Materials 30 (2008) 1240–1243
- [13] J. B. CASADY, "STATUS OF SILICON CARBIDE (SIC) AS A WIDE-BANDGAP SEMICONDUCTOR FOR HIGH-TEMPERATURE APPLICATIONS: A REVIEW", Solid-State Electronics Vol. 39, No. 10, pp. 1409-1422, 1996
- [14] L. Jiang, et al "A review of silicon carbide development in MEMS applications", Int. J. Computational Materials Science and Surface Engineering, Vol. 2, Nos. 3/4, 2009.
- [15] C. K. Chung et al, "Global and local residual stress in silicon carbide films produced by plasma-enhanced chemical vapor deposition", Surface & Coatings Technology 200 (2006) 4825 4834
- [16] A Stoffel, et al, "LPCVD against PECVD for micromechanical applications", J. Micromech. Microeng. 6 (1996) 1–13.
- [17] S. V. Deshpande, et al, "Optical properties of silicon nltride films deposited by hot filament chemical vapor deposition", J, Appl. Phys. 77 (12), 15 June (1995)
- [18] D. R. Southworth, et al. "Stress and Silicon Nitride A Crack in the Universal Dissipation of Glasses", PhysRevLett.102.225503(2009)
- [19] V.B. Braginsky, et al, "Thermodynamical fluctuations in optical mirror coatings", Physics Letters A 312 (2003) 244–255
- [20]H.W. Pan, et al, "Mechanical loss of silica film on silicon cantilever deposited by PECVD method", LVC meeting, Pasadena, USA, Mar.17th, 2015, LIGO-G1500194
- [21] Y. N. Xu, et al, "Electronic structure and optical properties of a and P phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide", PHYS. REV. B VOL 51, No. 24 15 JUNE (1995).
- [22] J. Thum, et al, "Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films", J. Appli. Phys. 91, 2002,
- [23] Z. Cao, "Microbridge testing of plasma-enhanced chemical-vapor deposited silicon oxide films on silicon wafers", J. Appli. Phys.97, 2005
- [24] Y.G. Jung, "Evaluation of elastic modulus and hardness of thin films by nanoindentation", J. Mater. Res. 19, 2004,
- [25] J. K. Choia ,et al, "Effects of process parameters on the growth of thick SiO2 using plasma enhanced chemical vapor deposition with hexamethyldisilazane", Surface and Coatings Technology 131 2000.
- [26]D. R.Crooks, et al, "Experimental measurements of mechanical dissipation associated with dielectric coatings formed using SiO2, Ta2O5 and Al2O3"Class. Quan. Grav. 23 (2006)4953-4965
- [27]S. Penn, "Exploring Coating Thermal Noise via Loss in Fused Silica Coatings" Proc. Amaldi 2009, LIGO -G0900600
- [28]I. Martin, "Studies of materials for use in future interferometric gravitational wave detectors", PhD thesis, University of Glasgow, (2009)
- [29] M. Principe, "Reflective coating optimization for interferometric detectors of gravitational waves", Vol. 23, No. 9 OPTICS EXPRESS, 4 May 2015 p.10938
- [30] S. Chao, et al, "Room temperature mechanical loss of high stress silicon nitride film measured by cantilever ring-down method on double-side coated cantilever" LVC

meeting, Budapest, Hungary,Sep. 1st,2015, LIGO-G1501068
[31] J. Steinlechner, et al, "Thermal noise reduction and absorption optimization via multimaterial coatings", PHYSICAL REVIEW D 91, 042001 (2015)

Thank You For Your Attention