# **Gravitational Wave Detection**



#### Harald Lück

on behalf of the LIGO Scientific Collaboration



Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover



#### LIGO-G1601727

Press conference Feb. 11<sup>th</sup> 2016 Washington D.C.

#### We have detected GRAVITATIONAL WAVES ! We did it !

or nology





#### Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS Who is $WE? \rightarrow$ paper has 1004 authors

R. X. Adhikari, <sup>1</sup> V. B. Adva,<sup>8</sup> C. Affeldt,<sup>8</sup> M. Agathos,<sup>9</sup> K. Agatsuma,<sup>9</sup> N. Aggarwal,<sup>10</sup> O. D. Agujar,<sup>11</sup> L. Ajello,<sup>12,13</sup> C. C. Arceneaux.<sup>21</sup> J. S. Areeda.<sup>22</sup> N. Arnaud.<sup>23</sup> K. G. Arun.<sup>24</sup> S. Ascenzi.<sup>25,13</sup> G. Ashton.<sup>26</sup> M. Ast.<sup>27</sup> S. M. Aston.<sup>6</sup> P. Astone.<sup>28</sup> P. Aufmuth.<sup>8</sup> C. Aulbert.<sup>8</sup> S. Babak.<sup>29</sup> P. Bacon.<sup>30</sup> M. K. M. Bader.<sup>9</sup> P. T. Baker.<sup>31</sup> F. Baldaccini.<sup>32,33</sup> G. Ballardin,<sup>34</sup> S. W. Ballmer,<sup>35</sup> J. C. Barayoga,<sup>1</sup> S. E. Barclay,<sup>36</sup> B. C. Barish,<sup>1</sup> D. Barker,<sup>37</sup> F. Barone,<sup>3,4</sup> B. Barr,<sup>36</sup> L. Barsotti,<sup>10</sup> M. Barsuglia,<sup>30</sup> D. Barta,<sup>38</sup> J. Bartlett,<sup>37</sup> I. Bartos,<sup>39</sup> R. Bassiri,<sup>40</sup> A. Basti,<sup>18,19</sup> J. C. Batch,<sup>37</sup> C. Baune,<sup>8</sup> V. Bavigadda,<sup>34</sup> M. Bazzan,<sup>41,42</sup> B. Behnke,<sup>29</sup> M. Bejger,<sup>43</sup> A. S. Bell,<sup>36</sup> C. J. Bell,<sup>36</sup> B. K. Berger,<sup>1</sup> J. Bergman,<sup>37</sup> G. Billingsley,<sup>1</sup> J. Birch,<sup>6</sup> R. Birney,<sup>49</sup> S. Biscans,<sup>10</sup> A. Bisht,<sup>8,17</sup> M. Bitossi,<sup>34</sup> C. Biwer,<sup>35</sup> M. A. Bizouard,<sup>23</sup> J. K. Blackburn,<sup>1</sup> C. D. Blair,<sup>50</sup> D. G. Blair,<sup>50</sup> R. M. Blair,<sup>37</sup> S. Bloemen,<sup>51</sup> O. Bock,<sup>8</sup> T. P. Bodiya,<sup>10</sup> M. Boer,<sup>52</sup> G. Bogaert,<sup>52</sup> C. Bogan,<sup>8</sup> A. Bohe,<sup>29</sup> K. Bohémier,<sup>35</sup> P. Bojtos,<sup>53</sup> C. Bond,<sup>44</sup> F. Bondu,<sup>54</sup> R. Bonnand,<sup>7</sup> B. A. Boom,<sup>9</sup> R. Bork,<sup>1</sup> V. Boschi,<sup>18,19</sup> S. Bose, 55,14 Y. Bouffanais, 30 A. Bozzi, 34 C. Bradaschia, 19 P. R. Brady, 16 V. B. Braginsky, 48 M. Branchesi, 56,57 J. E. Brau, 58 T. Briant.<sup>59</sup> A. Brillet.<sup>52</sup> M. Brinkmann.<sup>8</sup> V. Brisson.<sup>23</sup> P. Brockill.<sup>16</sup> A. F. Brooks,<sup>1</sup> D. A. Brown.<sup>35</sup> D. D. Brown.<sup>44</sup> N. M. Brown,<sup>10</sup> C. C. Buchanan,<sup>2</sup> A. Buikema,<sup>10</sup> T. Bulik,<sup>60</sup> H. J. Bulten,<sup>61,9</sup> A. Buonanno,<sup>29,62</sup> D. Buskulic,<sup>7</sup> C. Buy,<sup>30</sup> R. L. Byer,<sup>40</sup> M. Cabero,<sup>8</sup> L. Cadonati,<sup>63</sup> G. Cagnoli,<sup>64,65</sup> C. Cahillane,<sup>1</sup> J. Calderón Bustillo,<sup>66,63</sup> T. Callister,<sup>1</sup> E. Calloni,<sup>67,4</sup> J. B. Camp, 68 K. C. Cannon, 69 J. Cao, 70 C. D. Capano, 8 E. Capocasa, 30 F. Carbognani, 34 S. Caride, 71 J. Casanueva Diaz, 23 C. Casentini, 25,13 S. Caudill, 16 M. Cavaglia, 21 F. Cavalier, 23 R. Cavalieri, 34 G. Cella, 19 C. B. Cepeda, 1 L. Cerboni Baiardi, 56,57 G. Cerretani, 18,19 E. Cesarini, 25,13 R. Chakraborty, 1 T. Chalermsongsak, 1 S. J. Chamberlin, 72 M. Chan, 36 S. Chao, 73 P. Charlton,<sup>74</sup> E. Chassande-Mottin,<sup>30</sup> H. Y. Chen,<sup>75</sup> Y. Chen,<sup>76</sup> C. Cheng,<sup>73</sup> A. Chincarini,<sup>46</sup> A. Chiummo,<sup>34</sup> H. S. Cho,<sup>77</sup>

M. Cho, 62 J. H. Chow, 20 N. Christensen, 78 Q. Chu, 50 S. Chua, 59 S. Chung, 50 G. Ciani, 5 F. Clara, 37 J. A. Clark, 63 J. H. Clayton, 16 F. Cleva, 52 E. Coccia, 25,12,13 P.-F. Cohadon, 59 T. Cokelaer, 91 A. Colla, 79,28 C. G. Collette, 80 L. Cominsky, 81 M. Constancio Jr., 11 A. Conte, 79,28 L. Conti, 42 D. Cook, 37 T. R. Corbitt, 2 N. Cornish, 31 A. Corsi, 71 S. Cortese, 34 C. A. Costa, 11 M. W. Coughlin,<sup>78</sup> S. B. Coughlin,<sup>82</sup> J.-P. Coulon,<sup>52</sup> S. T. Countryman,<sup>39</sup> P. Couvares,<sup>1</sup> E. E. Cowan,<sup>63</sup> D. M. Coward,<sup>50</sup> M. J. Cowart, 6 D. C. Coyne, 1 R. Coyne, 71 K. Craig, 36 J. D. E. Creighton, 16 T. D. Creighton, 85 J. Cripe, 2 S. G. Crowder, 83 A. Cumming, 36 L. Cunningham, 36 E. Cuoco, 34 T. Dal Canton, 8 S. L. Danilishin, 36 S. D'Antonio, 13 K. Danzmann, 17,8 N. S. Darman,<sup>84</sup> V. Dattilo,<sup>34</sup> I. Dave,<sup>47</sup> H. P. Daveloza,<sup>85</sup> M. Davier,<sup>23</sup> G. S. Davies,<sup>36</sup> E. J. Daw,<sup>86</sup> R. Day,<sup>34</sup> S. De,<sup>35</sup> D. DeBra,<sup>40</sup> G. Debreczeni,<sup>38</sup> J. Degallaix,<sup>65</sup> M. De Laurentis,<sup>67,4</sup> S. Deléglise,<sup>59</sup> W. Del Pozzo,<sup>44</sup> T. Denker,<sup>8,17</sup> T. Dent,<sup>8</sup> H. Dereli, 52 V. Dergachev, 1 R. T. DeRosa, 6 R. De Rosa, 67,4 R. DeSalvo, 87 S. Dhurandhar, 14 M. C. Díaz, 85 A. Dietz, 21 L. Di Fiore,<sup>4</sup> M. Di Giovanni,<sup>79,28</sup> A. Di Lieto,<sup>18,19</sup> S. Di Pace,<sup>79,28</sup> I. Di Palma,<sup>29,8</sup> A. Di Virgilio,<sup>19</sup> G. Dojcinoski,<sup>88</sup> V. Dolique,<sup>65</sup> F. Donovan,<sup>10</sup> K. L. Dooley,<sup>21</sup> S. Doravari,<sup>6,8</sup> R. Douglas,<sup>36</sup> T. P. Downes,<sup>16</sup> M. Drago,<sup>8,89,90</sup> R. W. P. Drever,<sup>1</sup> J. C. Driggers, 37 Z. Du, 70 M. Ducrot, 7 S. E. Dwyer, 37 T. B. Edo, 86 M. C. Edwards, 78 A. Effler, 6 H.-B. Eggenstein, 8 P. Ehrens, <sup>1</sup> J. Eichholz, <sup>5</sup> S. S. Eikenberry, <sup>5</sup> W. Engels, <sup>76</sup> R. C. Essick, <sup>10</sup> T. Etzel, <sup>1</sup> M. Evans, <sup>10</sup> T. M. Evans, <sup>6</sup> R. Everett, <sup>72</sup> M. Factourovich, 39 V. Fafone, 25,13,12 H. Fair, 35 S. Fairhurst, 91 X. Fan, 70 Q. Fang, 50 S. Farinon, 46 B. Farr, 75 W. M. Farr, 44 M. Favata,<sup>88</sup> M. Fays,<sup>91</sup> H. Fehrmann,<sup>8</sup> M. M. Fejer,<sup>40</sup> I. Ferrante,<sup>18,19</sup> E. C. Ferreira,<sup>11</sup> F. Ferrini,<sup>34</sup> F. Fidecaro,<sup>18,19</sup> I. Fiori, 34 D. Fiorucci, 30 R. P. Fisher, 35 R. Flaminio, 65,92 M. Fletcher, 36 N. Fotopoulos, 1 J.-D. Fournier, 52 S. Franco, 23 S. Frasca, 79,28 F. Frasconi, 19 M. Frei, 112 Z. Frei, 53 A. Freise, 44 R. Frey, 58 V. Frey, 23 T. T. Fricke, 8 P. Fritschel, 10 V. V. Frolov, 6 P. Fulda,<sup>5</sup> M. Fyffe,<sup>6</sup> H. A. G. Gabbard,<sup>21</sup> J. R. Gair,<sup>93</sup> L. Gammaitoni,<sup>32,33</sup> S. G. Gaonkar,<sup>14</sup> F. Garufi,<sup>67,4</sup> A. Gatto,<sup>30</sup> G. Gaur, 94,95 N. Gehrels, 68 G. Gemme, 46 B. Gendre, 52 E. Genin, 34 A. Gennai, 19 J. George, 47 L. Gergely, 96 V. Germain, Archisman Ghosh,<sup>15</sup> S. Ghosh,<sup>51,9</sup> J. A. Giaime,<sup>2,6</sup> K. D. Giardina,<sup>6</sup> A. Giazotto,<sup>19</sup> K. Gill,<sup>97</sup> A. Glaefke,<sup>36</sup> E. Goetz,<sup>98</sup> R. Goetz,<sup>5</sup> L. M. Goggin,<sup>16</sup> L. Gondan,<sup>53</sup> G. González,<sup>2</sup> J. M. Gonzalez Castro,<sup>18,19</sup> A. Gonakumar,<sup>99</sup> N. A. Gordon,<sup>36</sup> M. L. Gorodetsky, 48 S. E. Gossan, 1 M. Gosselin, 34 R. Gouaty, 7 C. Graef, 36 P. B. Graff, 62 M. Granata, 65 A. Grant, 36 S. Gras, 10 C. Gray, 37 G. Greco, 56, 57 A. C. Green, 44 P. Groot, 51 H. Grote, 8 S. Grunewald, 29 G. M. Guidi, 56, 57 X. Guo, 70 A. Gupta,14 M. K. Gupta,95 K. E. Gushwa,1 E. K. Gustafson,1 R. Gustafson,98 J. J. Hacker,22 B. R. Hall,55 E. D. Hall,1 G. Hammond, 36 M. Haney, 99 M. M. Hanke, 8 J. Hanks, 37 C. Hanna, 72 M. D. Hannam, 91 J. Hanson, 6 T. Hardwick, 2 J. Harms, 56,57 G. M. Harry, 100 I. W. Harry, 29 M. J. Hart, 36 M. T. Hartman, 5 C.-J. Haster, 44 K. Haughian, 36 A. Heidmann, 59 M. C. Heintze, 5,6 H. Heitmann, 52 P. Hello, 23 G. Hemming, 34 M. Hendry, 36 I. S. Heng, 36 J. Hennig, 36 A. W. Heptonstall, 1 M. Heurs, 8,17 S. Hild, 36 D. Hoak, 101 K. A. Hodge, 1 D. Hofman, 65 S. E. Hollitt, 102 K. Holt, 6 D. E. Holz, 75 P. Hopkins, 91 D. J. Hosken, 102 J. Hough, 36 E. A. Houston, 36 E. J. Howell, 50 Y. M. Hu, 36 S. Huang, 73 E. A. Huerta, 103, 82 D. Huet, 23 B. Hughey,<sup>97</sup> S. Husa,<sup>66</sup> S. H. Huttner,<sup>36</sup> T. Huynh-Dinh,<sup>6</sup> A. Idrisy,<sup>72</sup> N. Indik,<sup>8</sup> D. R. Ingram,<sup>37</sup> R. Inta,<sup>71</sup> H. N. Isa,<sup>36</sup> J.-M. Isac, 59 M. Isi, 1 G. Islas, 22 T. Isogai, 10 B. R. Iyer, 15 K. Izumi, 37 T. Jacqmin, 59 H. Jang, 77 K. Jani, 63 P. Jaranowski, 104 S. Jawahar.<sup>105</sup> F. Jiménez-Forteza,<sup>66</sup> W. W. Johnson,<sup>2</sup> D. I. Jones,<sup>26</sup> G. Jones,<sup>91</sup> R. Jones,<sup>36</sup> R. J. G. Jonker,<sup>9</sup> L. Ju,<sup>50</sup>

B. P. Abbott,<sup>1</sup> R. Abbott,<sup>1</sup> T. D. Abbott,<sup>2</sup> M. R. Abernathy,<sup>1</sup> F. Acernese,<sup>3,4</sup> K. Ackley,<sup>5</sup> C. Adams,<sup>6</sup> T. Adams,<sup>7</sup> P. Addesso,<sup>3</sup> Haris K,<sup>106</sup> C. V. Kalaghatej,<sup>24,91</sup> V. Kalogera,<sup>82</sup> S. Kandhasamy,<sup>21</sup> G. Kang,<sup>77</sup> J. B. Kanter,<sup>1</sup> S. Karki,<sup>58</sup> M. Kasptzack,<sup>22,33,4</sup> E. Katsavounidis, <sup>10</sup> W. Katzman,<sup>6</sup> S. Kaufer,<sup>17</sup> T. Kaur,<sup>50</sup> K. Kawabe,<sup>37</sup> F. Kawazoe,<sup>8,17</sup> F. Kéfélian,<sup>52</sup> M. S. Kehl,<sup>66</sup> A. Ain, 14 P. Ajith, 15 B. Allen, 8, 16, 17 A. Allocca, 18, 19 P. A. Altin, 20 S. B. Anderson, 16 K. Arai, 1 M. C. Araya, 1 D. Keitel, 8, 66 D. B. Kelley, 25 W. Kells, 1 D. G. Keppel, 8 R. Kennedy, 86 J. S. Key, 83 A. Khalaidovski, 8 F. Y. Khaliidi 8 I. Khan, 12 S. Khan, 91 Z. Khan, 95 E. A. Khazanov, 107 N. Kijbunchoo, 37 C. Kim, 77 J. Kim, 108 K. Kim, 109 Nam-Gyu Kim, 77 Namjun Kim, 44 Y.-M. Kim, 108 E. J. King, 102 P. J. King, 37 D. L. Kinzel, 6 J. S. Kissel, 37 L. Klevbolte, 27 S. Klimenko, 5 S. M. Koehlenbeck, 8

K. Kokevama,<sup>2</sup> S. Kolev,<sup>9</sup> V. Kondrashov,<sup>1</sup> A. Kontos,<sup>10</sup> M. Korobko,<sup>27</sup> W. Z. Korth,<sup>1</sup> I. Kowalska,<sup>60</sup> D. B. Kozak,<sup>1</sup> V. Kringel,<sup>8</sup> B. Krishnan,<sup>8</sup> A. Królak,<sup>110,111</sup> C. Krueger,<sup>17</sup> G. Kuehn,<sup>8</sup> P. Kumar,<sup>69</sup> L. Kuo,<sup>73</sup> A. Kutynia,<sup>110</sup> B. D. Lackey,<sup>35</sup>

M. Landry, 37 J. Lange, 112 B. Lantz, 40 P. D. Lasky, 113 A. Lazzarini, 1 C. Lazzaro, 63, 42 P. Leaci, 29, 79, 28 S. Leavey, 36 G. Bergmann,<sup>6</sup> C. P. L. Berry,<sup>44</sup> D. Bersanetti,<sup>45,46</sup> A. Bertolini,<sup>9</sup> J. Betzwieser,<sup>6</sup> S. Bhagwat,<sup>55</sup> R. Bhandare,<sup>67</sup> I. A. Biknko,<sup>46</sup> E. O. Lebigot,<sup>30,70</sup> C. H. Lee,<sup>109</sup> H. M. Lee,<sup>114</sup> K. Lee,<sup>16</sup> A. Lenon,<sup>15</sup> M. Leonardi,<sup>39,90</sup> J. R. Leonardi,<sup>39,90</sup> J. R. Leonardi,<sup>39,90</sup> J. R. Leonardi,<sup>39,90</sup> J. R. Leonardi,<sup>30,10</sup> C. H. Lee,<sup>100</sup> H. M. Lee,<sup>114</sup> K. Lee,<sup>100</sup> H. M. Lee,<sup>114</sup> K. Lee,<sup>100</sup> H. M. Lee,<sup>114</sup> K. Lee,<sup>100</sup> H. M. Leonardi,<sup>30,10</sup> C. H. Leonardi,<sup>30,1</sup> N. Letendre,<sup>7</sup> Y. Levin,<sup>113</sup> B. M. Levine,<sup>37</sup> T. G. F. Li,<sup>1</sup> A. Libson,<sup>10</sup> T. B. Littenberg,<sup>115</sup> N. A. Lockerbie,<sup>105</sup> J. Logue,<sup>36</sup> A. L. Lombardi.<sup>101</sup> J. E. Lord.<sup>35</sup> M. Lorenzini.<sup>12,13</sup> V. Loriette.<sup>116</sup> M. Lormand.<sup>6</sup> G. Losurdo.<sup>57</sup> J. D. Lough.<sup>8,17</sup> H. Lück.<sup>17,8</sup> A. P. Lundgren,<sup>8</sup> J. Luo,<sup>78</sup> R. Lynch,<sup>10</sup> Y. Ma,<sup>50</sup> T. MacDonald,<sup>40</sup> B. Machenschalk,<sup>8</sup> M. MacInnis,<sup>10</sup> D. M. Macleod,<sup>2</sup> E Magaña-Sandoval,<sup>35</sup> R. M. Magee,<sup>55</sup> M. Mageswaran,<sup>1</sup> E. Majorana,<sup>28</sup> I. Maksimovic,<sup>116</sup> V. Malvezzi,<sup>25,13</sup> N. Man,<sup>52</sup> I. Mandel,<sup>44</sup> V. Mandic,<sup>83</sup> V. Mangano,<sup>36</sup> G. L. Mansell,<sup>20</sup> M. Manske,<sup>16</sup> M. Mantovani,<sup>34</sup> F. Marchesoni,<sup>117,33</sup> F. Marion,<sup>7</sup> S. Márka,<sup>39</sup> Z. Márka,<sup>39</sup> A. S. Markosyan,<sup>40</sup> E. Maros,<sup>1</sup> F. Martelli,<sup>56,57</sup> L. Martellini,<sup>52</sup> I. W. Martin,<sup>36</sup> R. M. Martin,<sup>5</sup> D. V. Martynov,<sup>1</sup> J. N. Marx,<sup>1</sup> K. Mason,<sup>10</sup> A. Masserot,<sup>7</sup> T. J. Massinger,<sup>35</sup> M. Masso-Reid,<sup>36</sup> F. Matichard,<sup>10</sup> L. Matone,<sup>39</sup> N. Mayalyala.<sup>10</sup> N. Mazumder.<sup>55</sup> G. Mazzolo.<sup>8</sup> R. McCarthy.<sup>37</sup> D. E. McClelland.<sup>20</sup> S. McCormick.<sup>6</sup> S. C. McGuire.<sup>118</sup> G. McIntyre,<sup>1</sup> J. McIver,<sup>1</sup> D. J. A. McKechan,<sup>91</sup> D. J. McManus,<sup>20</sup> S. T. McWilliams,<sup>103</sup> D. Meacher,<sup>72</sup> G. D. Meadors.<sup>29,8</sup> J. Meidam,<sup>9</sup> A. Melatos,<sup>84</sup> G. Mendell,<sup>37</sup> D. Mendoza-Gandara,<sup>8</sup> R. A. Mercer,<sup>16</sup> E. Merilh,<sup>37</sup> M. Merzougui,<sup>52</sup> S. Meshkov,<sup>1</sup> E. Messaritaki,<sup>1</sup> C. Messenger,<sup>36</sup> C. Messick,<sup>72</sup> P. M. Meyers,<sup>83</sup> F. Mezzani,<sup>28,79</sup> H. Miao,<sup>44</sup> C. Michel,<sup>65</sup> H. Middleton,<sup>44</sup> E. E. Mikhailov,<sup>119</sup> L. Milano,<sup>67,4</sup> J. Miller,<sup>10</sup> M. Millhouse,<sup>31</sup> Y. Minenkov,<sup>13</sup> J. Ming,<sup>29,8</sup> S. Mirshekari,<sup>120</sup> C. Mishra,<sup>15</sup>

S. Mitra, 14 V. P. Mitrofanov, 48 G. Mitselmakher, 5 R. Mittleman, 10 A. Moggi, 19 M. Mohan, 34 S. R. P. Mohapatra, 10 M. Montani,<sup>56,57</sup> B. C. Moore,<sup>88</sup> C. J. Moore,<sup>121</sup> D. Moraru,<sup>37</sup> G. Moreno,<sup>37</sup> S. R. Morriss,<sup>85</sup> K. Mossavi,<sup>8</sup> B. Mours,<sup>7</sup> C. M. Mow-Lowry, 44 C. L. Mueller, 5 G. Mueller, 5 A. W. Muir, 91 Arunava Mukheriee, 15 D. Mukheriee, 16 S. Mukheriee, 85 N. Mukund, 14 A. Mullavey, 6 J. Munch, 102 D. J. Murphy, 39 P. G. Murray, 36 A. Mytidis, 5 I. Nardecchia, 25,13 L. Naticchioni, 79,28 R. K. Nayak,<sup>122</sup> V. Necula,<sup>5</sup> K. Nedkova,<sup>101</sup> G. Nelemans,<sup>51,9</sup> M. Nen,<sup>45,46</sup> A. Neunzert,<sup>98</sup> G. Newton,<sup>36</sup> T. T. Nguyen,<sup>20</sup> A. B. Nielsen,<sup>8</sup> S. Nissanke,<sup>51,9</sup> A. Nitz,<sup>8</sup> F. Nocera,<sup>34</sup> D. Nolting,<sup>6</sup> M. E. Normandin,<sup>85</sup> L. K. Nuttall,<sup>35</sup> J. Oberling,<sup>37</sup> E. Ochsner, 16 J. O'Dell, 123 E. Oelker, 10 G. H. Ogin, 124 J. J. Oh, 125 S. H. Oh, 125 F. Ohme, 91 M. Oliver, 66 P. Oppermann, 8 Richard J. Oram.<sup>6</sup> B. O'Reilly,<sup>6</sup> R. O'Shaughnessy,<sup>112</sup> D. J. Ottaway,<sup>102</sup> R. S. Ottens,<sup>5</sup> H. Overmier,<sup>6</sup> B. J. Owen,<sup>71</sup> A. Pai, 106 S. A. Pai, 47 J. R. Palamos, 58 O. Palashov, 107 C. Palomba, 28 A. Pal-Singh, 27 H. Pan, 73 Y. Pan, 62 C. Pankow, 82 F. Pannarale, 91 B. C. Pant, 47 F. Paoletti, 34,19 A. Paoli, 34 M. A. Papa, 29,16,8 H. R. Paris, 40 W. Parker, 6 D. Pascucci, 36 A. Pasqualetti,<sup>34</sup> R. Passaquieti,<sup>18,19</sup> D. Passuello,<sup>19</sup> B. Patricelli,<sup>18,19</sup> Z. Patrick,<sup>40</sup> B. L. Pearlstone,<sup>36</sup> M. Pedraza,<sup>1</sup>

R. Pedurand, 65 L. Pekowsky, 35 A. Pele, 6 S. Penn, 126 A. Perreca, 1 M. Phelps, 36 O. Piccinni, 79,28 M. Pichot, 52 F. Piergiovanni, 56,57 V. Pierro, 87 G. Pillant, 34 L. Pinard, 65 I. M. Pinto, 87 M. Pitkin, 36 R. Poggiani, 18,19 P. Popolizio, 34 A. Post,<sup>8</sup> J. Powell,<sup>36</sup> J. Prasad,<sup>14</sup> V. Predoi,<sup>91</sup> S. S. Premachandra,<sup>113</sup> T. Prestegard,<sup>83</sup> L. R. Price,<sup>1</sup> M. Prijatelj,<sup>34</sup> M. Principe,<sup>87</sup> S. Privitera,<sup>29</sup> G. A. Prodi,<sup>89,90</sup> L. Prokhorov,<sup>48</sup> O. Puncken,<sup>8</sup> M. Punturo,<sup>33</sup> P. Puppo,<sup>28</sup> M. Pürrer,<sup>29</sup> H. Oi,<sup>16</sup> J. Qin, 50 V. Quetschke, 85 E. A. Quintero, 1 R. Quitzow-James, 58 F. J. Raab, 37 D. S. Rabeling, 20 H. Radkins, 37 P. Raffai, 53 S. Raja,<sup>47</sup> M. Rakhmanov,<sup>85</sup> P. Rapagnani,<sup>79,28</sup> V. Raymond,<sup>29</sup> M. Razzano,<sup>18,19</sup> V. Re,<sup>25</sup> J. Read,<sup>22</sup> C. M. Reed,<sup>37</sup> T. Regimbau, 52 L. Rei, 46 S. Reid, 49 D. H. Reitze, 1.5 H. Rew, 119 S. D. Reyes, 35 F. Ricci, 79, 28 K. Riles, 98 N. A. Robertson, 1.36 R. Robie,<sup>36</sup> F. Robinet,<sup>23</sup> C. Robinson,<sup>62</sup> A. Rocchi,<sup>13</sup> A. C. Rodriguez,<sup>2</sup> L. Rolland,<sup>7</sup> J. G. Rollins,<sup>1</sup> V. J. Roma,<sup>58</sup> R. Romano,<sup>3,4</sup> G. Romanov,<sup>119</sup> J. H. Romie,<sup>6</sup> D. Rosińska,<sup>127,43</sup> S. Rowan,<sup>36</sup> A. Rüdiger,<sup>8</sup> P. Ruggi,<sup>34</sup> K. Ryan,<sup>37</sup> S. Sachdev,<sup>1</sup> T. Sadecki,<sup>37</sup> L. Sadeghian,<sup>16</sup> L. Salconi,<sup>34</sup> M. Saleem,<sup>106</sup> F. Salemi,<sup>8</sup> A. Samajdar,<sup>122</sup> L. Sammut,<sup>84,113</sup> E. J. Sanchez,<sup>1</sup> V. Sandberg,<sup>37</sup> B. Sandeen,<sup>82</sup> J. R. Sanders,<sup>98,35</sup> L. Santamaría,<sup>1</sup> B. Sassolas,<sup>65</sup> B. S. Sathyaprakash,<sup>91</sup> P. R. Saulson,<sup>35</sup> O. Sauter,<sup>98</sup> R. L. Savage,<sup>37</sup> A. Sawadsky,<sup>17</sup> P. Schale,<sup>58</sup> R. Schilling<sup>†</sup>,<sup>8</sup> J. Schmidt,<sup>8</sup> P. Schmidt,<sup>1,76</sup> R. Schnabel,<sup>27</sup> R. M. S. Schofield,<sup>58</sup> A. Schönbeck,<sup>27</sup> E. Schreiber,<sup>8</sup> D. Schuette,<sup>8,17</sup> B. F. Schutz,<sup>91,29</sup> J. Scott,<sup>36</sup> S. M. Scott,<sup>20</sup> D. Sellers, 6 A. S. Sengupta, 94 D. Sentenac, 34 V. Sequino, 25,13 A. Sergeev, 107 G. Serna, 22 Y. Setyawati, 51,9 A. Sevigny, 37 D. A. Shaddock,<sup>20</sup> S. Shah,<sup>51,9</sup> M. S. Shahriar,<sup>82</sup> M. Shaltev,<sup>8</sup> Z. Shao,<sup>1</sup> B. Shapiro,<sup>40</sup> P. Shawhan,<sup>62</sup> A. Sheperd,<sup>16</sup> D. H. Shoemaker,<sup>10</sup> D. M. Shoemaker,<sup>63</sup> K. Siellez,<sup>52,63</sup> X. Siemens,<sup>16</sup> D. Sigg,<sup>37</sup> A. D. Silva,<sup>11</sup> D. Simakov,<sup>8</sup> A. Singer,<sup>1</sup> L. P. Singer.<sup>68</sup> A. Singh.<sup>29,8</sup> R. Singh.<sup>2</sup> A. Singhal, <sup>12</sup> A. M. Sintes, <sup>66</sup> B. J. J. Slagmolen, <sup>20</sup> J. R. Smith, <sup>22</sup> N. D. Smith, <sup>1</sup> R. J. E. Smith,<sup>1</sup> E. J. Son,<sup>125</sup> B. Sorazu,<sup>36</sup> F. Sorrentino,<sup>46</sup> T. Souradeep,<sup>14</sup> A. K. Srivastava,<sup>95</sup> A. Staley,<sup>39</sup> M. Steinke,<sup>8</sup> J. Steinlechner, 36 S. Steinlechner, 36 D. Steinmeyer, 8,17 B. C. Stephens, 16 R. Stone, 85 K. A. Strain, 36 N. Straniero, 65 G. Stratta.56,57 N. A. Strauss,78 S. Strigin,48 R. Sturani,120 A. L. Stuver, 6 T. Z. Summerscales,128 L. Sun,84 P. J. Sutton,91 B. L. Swinkels,<sup>34</sup> M. J. Szczepańczyk,<sup>97</sup> M. Tacca,<sup>30</sup> D. Talukder,<sup>58</sup> D. B. Tanner,<sup>5</sup> M. Tápai,<sup>96</sup> S. P. Tarabrin,<sup>8</sup> A. Taracchini,<sup>29</sup>

R. Taylor,<sup>1</sup> T. Theeg,<sup>8</sup> M. P. Thirugnanasambandam,<sup>1</sup> E. G. Thomas,<sup>44</sup> M. Thomas,<sup>6</sup> P. Thomas,<sup>37</sup> K. A. Thorne,<sup>6</sup> K. S. Thorne,<sup>76</sup> E. Thrane,<sup>113</sup> S. Tiwari,<sup>12</sup> V. Tiwari,<sup>91</sup> K. V. Tokmakov,<sup>105</sup> C. Tomlinson,<sup>86</sup> M. Tonelli,<sup>18,19</sup> C. V. Torres<sup>4</sup>, <sup>85</sup> C. I. Torrie,<sup>1</sup> D. Töyrä,<sup>44</sup> F. Travasso,<sup>32,33</sup> G. Traylor,<sup>6</sup> D. Trifirò,<sup>21</sup> M. C. Tringali,<sup>89,90</sup> L. Trozzo,<sup>129,19</sup> M. Tse,<sup>10</sup>

M, Turconi,<sup>52</sup> D. Tuyenbayev,<sup>85</sup> D. Ugolini,<sup>130</sup> C. S. Unnikrishnan,<sup>99</sup> A. L. Urban,<sup>16</sup> S. A. Usman,<sup>35</sup> H. Vahlbruch,<sup>17</sup> G. Vajente,<sup>1</sup> G. Valdes,<sup>85</sup> N. van Bakel,<sup>9</sup> M. van Beuzekom,<sup>9</sup> J. F. J. van den Brand,<sup>61,9</sup> C. Van Den Broeck,<sup>9</sup> D. C. Vander-Hyde, 35,22 L. van der Schaaf, 9 J. V. van Heijningen, 9 A. A. van Veggel, 36 M. Vardaro, 41,42 S. Vass, M. Vasúth,<sup>38</sup> R. Vaulin,<sup>10</sup> A. Vecchio,<sup>44</sup> G. Vedovato,<sup>42</sup> J. Veitch,<sup>44</sup> P. J. Veitch,<sup>102</sup> K. Venkateswara,<sup>131</sup> D. Verkindt, F. Vetrano, 56,57 A. Viceré, 56,57 S. Vinciguerra, 44 D. J. Vine, 49 J.-Y. Vinet, 52 S. Vitale, 10 T. Vo, 35 H. Vocca, 32,33 C. Vorvick, 37 D. Voss.<sup>5</sup> W. D. Vousden,<sup>44</sup> S. P. Vyatchanin,<sup>48</sup> A. R. Wade,<sup>20</sup> L. E. Wade,<sup>132</sup> M. Wade,<sup>132</sup> M. Walker,<sup>2</sup> L. Wallace,<sup>1</sup> S. Walsh, <sup>16,8,29</sup> G. Wang, <sup>12</sup> H. Wang, <sup>44</sup> M. Wang, <sup>44</sup> X. Wang, <sup>70</sup> Y. Wang, <sup>50</sup> R. L. Ward, <sup>20</sup> J. Warner, <sup>37</sup> M. Was, <sup>7</sup> B. Weaver, L.-W. Wei,52 M. Weinert, 8 A. J. Weinstein, 1 R. Weiss, 10 T. Welborn, 6 L. Wen, 50 P. Weßels, 8 M. West, 35 T. Westphal, 8 K. Wette,<sup>8</sup> J. T. Whelan,<sup>112,8</sup> D. J. White,<sup>86</sup> B. F. Whiting,<sup>5</sup> K. Wiesner,<sup>8</sup> R. D. Williams,<sup>1</sup> A. R. Williamson,<sup>9</sup> J. L. Willis, <sup>133</sup> B. Willke, <sup>17,8</sup> M. H. Wimmer, <sup>8,17</sup> W. Winkler, <sup>8</sup> C. C. Wipf, <sup>1</sup> A. G. Wiseman, <sup>16</sup> H. Wittel, <sup>8,17</sup> G. Woan, <sup>36</sup> . Worden, 37 J. L. Wright, 36 G. Wu, 6 J. Yablon, 82 W. Yam, 10 H. Yamamoto, 1 C. C. Yancey, 62 M. J. Yap, 20 H. Yu, 10 M. Yvert,<sup>7</sup> A. Zadrożny,<sup>110</sup> L. Zangrando,<sup>42</sup> M. Zanolin,<sup>97</sup> J.-P. Zendri,<sup>42</sup> M. Zevin,<sup>82</sup> F. Zhang,<sup>10</sup> L. Zhang,<sup>1</sup> M. Zhang,<sup>119</sup> Y. Zhang,<sup>112</sup> C. Zhao,<sup>50</sup> M. Zhou,<sup>82</sup> Z. Zhou,<sup>82</sup> X. J. Zhu,<sup>50</sup> M. E. Zucker,<sup>1,10</sup> S. E. Zuraw,<sup>101</sup> and J. Zweizig<sup>1</sup>

#### Phys. Rev. Lett. 116, 061102

## The advanced GW Network



Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

## Näherungsweise Integration der Feldgleichungen der Gravitation.

#### Von A. EINSTEIN.

§ 2. Ebene Gravitationswellen.

Aus den Gleichungen (6) und (9) folgt, daß sich Gravitationsfelder stets mit der Geschwindigkeit 1, d. h. mit Lichtgeschwindigkeit, fortpflanzen. Ebene, nach der positiven x-Achse fortschreitende Gravitationswellen sind daher durch den Ansatz zu finden

 $\gamma'_{\mu\nu} = \alpha_{\mu\nu} f(x_1 + i x_4) = \alpha_{\mu\nu} f(x - t) . \tag{15}$ 

Nachtrag. Das seltsame Ergebnis, daß Gravitationswellen existieren sollen, welche keine Energie transportieren (Typen a, b, c), klärt sich in einfacher Weise auf. Es handelt sich nämlich dabei nicht um »reale« Wellen, sondern um »scheinbare« Wellen, die darauf beruhen, daß als Bezugssystem ein wellenartig zitterndes Koordinatensystem benutzt wird. Dies sieht man bequem in folgender Weise ein.





#### Propagating Gravitational Waves

 Transversal waves in space-time travelling @ speed of light



Credit: ESA-C.Carreau



#### Sensitivity improvement eLIGO <-> aLIGO



"Observation of Gravitational Waves from a Binary Black Hole Merger"



Articles published week ending

12 FEBRUARY 2016



THE Detection GW150914

14. September 2015 09:50:45 UTC = 11:50:45 CEST

Detection of a transient signal in **both** advanced LIGO detectors

Published by American Physical Society<sup>\*\*</sup>



Volume 116, Number 6



ç





## GW150914







#### **GW150914 = Binary BH**



10 100 4

Hannove

Albert-Einstein-Institut

Phys. Rev.

Harald Lück, September 2016, lake Baikal





Livingston, Louisiana (L1)



#### Two black holes with 29 and 36 solar masses





#### The most powerful event ever "seen"

#### GW150914

- Before: two BHs (29  $M_{\odot}$  + 36  $M_{\odot}$  = 65  $M_{\odot}$ )
- After: One BH (62 M<sub>o</sub>)
- Within 0.2 sec 2 M<sub>☉</sub> were radiated off in GWs = 4 × 10<sup>30</sup> kg (E=M c<sup>2</sup>)
- 3.5 × 10<sup>56</sup> erg / s
   = 3.5 × 10<sup>49</sup> W
- 50x as much as all stars in the universe together

# There were more Signals in O1



arXiv:1606.04856 and acc. by Phys. Rev. X; Binary Black Hole Mergers in the first Advanced LIGO Observing Run

# Discovery Timeline 01



September 2015

October 2015

November 2015

December 2015

January 2016

LIGO

Scientific

Collaboration

Courtesy Caltech/MIT/LIGO Laboratory

| "  | Γh | ρ, |   |     |
|----|----|----|---|-----|
|    |    |    |   |     |
|    | 1p | ee |   |     |
| Ci | σ  | na | 1 | ورے |
|    | LB |    |   | >   |

| Event                                                    | GW150914                             | GW151226                           | LVT151012                            |  |
|----------------------------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--|
| Signal-to-noise ratio $\rho$                             | 23.7                                 | 13.0                               | 9.7                                  |  |
| False alarm rate FAR/yr <sup>-1</sup>                    | $< 6.0 	imes 10^{-7}$                | $< 6.0 	imes 10^{-7}$              | 0.37                                 |  |
| p-value                                                  | $7.5	imes10^{-8}$                    | $7.5	imes10^{-8}$                  | 0.045                                |  |
| Significance                                             | $> 5.3 \sigma$                       | $> 5.3 \sigma$                     | 1.7 <b>σ</b>                         |  |
| Primary mass $m_1^{\text{source}}/M_{\odot}$             | $36.2^{+5.2}_{-3.8}$                 | $14.2^{+8.3}_{-3.7}$               | $23^{+18}_{-6}$                      |  |
| Secondary mass $m_2^{\text{source}}/\text{M}_{\odot}$    | $29.1_{-4.4}^{+3.7}$                 | $7.5^{+2.3}_{-2.3}$                | $13^{+4}_{-5}$                       |  |
| Effective inspiral spin<br>Xeff                          | $-0.06^{+0.14}_{-0.14}$              | $0.21\substack{+0.20 \\ -0.10}$    | $0.0^{+0.3}_{-0.2}$                  |  |
| Final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$       | $62.3^{+3.7}_{-3.1}$                 | $20.8^{+6.1}_{-1.7}$               | $35^{+14}_{-4}$                      |  |
| Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$ | $3.6^{+0.5}_{-0.4}\times \\ 10^{56}$ | $3.3^{+0.8}_{-1.6}\times\\10^{56}$ | $3.1^{+0.8}_{-1.8}\times \\ 10^{56}$ |  |
| Luminosity distance $D_{\rm L}/{ m Mpc}$                 | $420^{+150}_{-180}$                  | $440^{+180}_{-190}$                | $1000^{+500}_{-500}$                 |  |
|                                                          |                                      | <sup>19</sup> arXiv                | :1606.04856                          |  |

journals.aps.org/prl/abstract/10.1103/ PhysRevLett.116.241103, arxiv.org/abs/1606.04856 (accepted to PRX)

## Know Stellar-Mass Black Holes - August 2016





#### Statistics GW150914 & GW151226

- False alarm rate > 1.6 My
- Significance > 5.3  $\sigma$
- False Alarm Probability =  $7.5 \times 10^{-8}$

Ca. 48 d coincident time (after cleaning, vetoeing and min. lock duration filter) With 0.1 s time shift background analysis  $\rightarrow$  1.6My equiv. data



### **Sky Localisation**



Image credit: LIGO (Leo Singer) /Milky Way image (Axel Mellinger)





Harald Lück, September 2016, lake Baikal

## The advanced GW Network



#### How far away was GW150914?

- 1.3 billion light years away
- The merger happened 1.3 Gy ago
- How do we know?
- Time evolution  $\rightarrow$  mass of the objects
- mass + time evolution  $\rightarrow$  GW amplitude (a) origin
- $h(r) = h_o / r$
- h@earth =  $h_{observed} \rightarrow distance$

## **EM Follow-up observations**

THE ASTROPHYSICAL JOURNAL LETTERS, 826:L13, 2016 JULY 20



Preliminary estimates of the time, significance, and sky location of the event were shared with 63 (80 now) teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities Alerts if FAR> < 1/month





## Upgrades $\rightarrow$ advanced generation

| Upgrade                                                                                           | Parameter                       | Improvement                                                                 |  |
|---------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------|--|
| More laser power                                                                                  | Up to 200 W<br>800 kW in cavity | Shot noise                                                                  |  |
| Larger Optics                                                                                     | ~ 40 kg                         | Less thermal noise                                                          |  |
| Better optics                                                                                     | < 0.25 ppm/cm<br>< 0.3 nm rms   | Less thermal lensing<br>Less scattered light                                |  |
| Signal Recycling / RSE                                                                            |                                 | Chose bandwidth independent<br>from cavity buildup<br>Tune centre frequency |  |
| Better suspensions<br>(mainly LIGO)                                                               | Seismic isol.<br>Glas fibres    | Low frequency sensitivity<br>Lower suspension thermal noise                 |  |
| <ul> <li>Essentially all subsystems</li> <li>Input optics</li> <li>Output Mode Cleaner</li> </ul> |                                 | Less technical noise                                                        |  |
| <ul> <li>Electronics</li> <li>Auxiliary optics</li> <li>Thermal compensation</li> </ul>           |                                 | Minor improvements<br>O1 $\rightarrow$ O2 (~50% Vol)                        |  |
| <ul> <li>Electrostatic Actuators</li> </ul>                                                       |                                 |                                                                             |  |

#### More to come



#### **Detection** is just the first step

#### The goal is Gravitational Wave **Astronomy**

 $\rightarrow$  routinely observing regions and times which are inaccessible by other messengers

 $\rightarrow$  add info by combining GW & other messengers





# **GW Spectrum**

10

100

#### Sources





eLISA



Universität Hannover

#### Arm length ~1 Mio km

Bild: AEI/Milde Marketing/exozet

## LISA and LISA Pathfinder



#### LISA Pathfinder results exceed expectations by orders of magnitude



## LISA und LISA Pathfinder

#### → LISA PATHFINDER EXCEEDS EXPECTATIONS



· eesa

www.esa.int

#### A long journey...

EINSTEIN TELESCOPE

ET



#### ...on the path to routine GW astronomy





#### **3rd Generation Gravitational Wave Observatories**

Einstein gravitational wave Telescope

**Conceptual Design Study** 

EINSTEIN

ΕT

-----

## Einstein Telescope Conceptual Design Study

- May 2008 May 2011
- Pan European effort
- Science Team = ca. 250 members

http://www.etgw.eu/etdsdocument

#### ET EINSTEIN TELESCOPE

## Einstein Teleskop

100 – 200m underground

====

# Einstein Telescope

 $4 \times 10^{49}$  J/s peak power of source, 40 yotta yotta watt.

 $1 \times 10^{25}$  meter distance to source, 10 yotta meter.

- $4 \times 10^3$  meter LIGO arm length, 4 kilometer.
- $2 \times 10^{0}$  meter test mass suspension length, 2 meter.
- $1 \times 10^{-6}$  meter ground vibration, 1 micrometer.

 $1 \times 10^{-18}$  meter arm difference at peak signal, 1 attometer.

LIGO-G1600792-v1

| Prefix<br>Name Symbol |    | 1000 <sup>m</sup> | 10″              | Decimal                                   |  |
|-----------------------|----|-------------------|------------------|-------------------------------------------|--|
|                       |    |                   |                  | Decimai                                   |  |
| yotta                 | Y  | 10008             | 1024             | 1 000 000 000 000 000 000 000 000         |  |
| zetta                 | z  | 10007             | 10 <sup>21</sup> | 1 000 000 000 000 000 000 000             |  |
| exa                   | Е  | 1000 <sup>6</sup> | 10 <sup>18</sup> | 1 000 000 000 000 000 000                 |  |
| peta                  | Ρ  | 1000 <sup>5</sup> | 10 <sup>15</sup> | 1 000 000 000 000 000                     |  |
| tera                  | т  | 10004             | 10 <sup>12</sup> | 1 000 000 000 000                         |  |
| giga                  | G  | 1000 <sup>3</sup> | 10 <sup>9</sup>  | 1 000 000 000                             |  |
| mega                  | м  | 1000 <sup>2</sup> | 10 <sup>6</sup>  | 1 000 000                                 |  |
| kilo                  | k  | 1000 <sup>1</sup> | 10 <sup>3</sup>  | 1 000                                     |  |
| hecto                 | h  | 10002/3           | 10 <sup>2</sup>  | 100                                       |  |
| deca                  | da | 10001/3           | 10 <sup>1</sup>  | 10                                        |  |
|                       |    | 10000             | 10 <sup>0</sup>  | 1                                         |  |
| deci                  | d  | 1000-1/3          | 10-1             | 0.1                                       |  |
| centi                 | С  | 1000-2/3          | 10-2             | 0.01                                      |  |
| milli                 | m  | 1000-1            | 10-3             | 0.001                                     |  |
| micro                 | μ  | 1000-2            | 10-6             | 0.000 001                                 |  |
| nano                  | n  | 1000-3            | 10 <sup>-9</sup> | 0.000 000 001                             |  |
| pico                  | р  | 1000-4            | 10-12            | 0.000 000 000 001                         |  |
| femto                 | t  | 1000-5            | 10-15            | 5 0.000 000 000 000 001                   |  |
| atto                  | a  | 1000-6            | 10-18            | <sup>B</sup> 0.000 000 000 000 000 001    |  |
| zepto                 | z  | 1000-7            | 10-21            | 21 0.000 000 000 000 000 000 000 001      |  |
| yocto                 | y  | 1000-8            | 10-24            | -24 0.000 000 000 000 000 000 000 000 001 |  |