Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run
- plots from the publication
Contents
- Figure 1 - Narrowband estimator for Omega_GW
- Figure 2 - 95% confidence region in Omega_alpha-alpha plane
- Figure 3 - Limits and models across many decades in frequency
- Figure 4 - 95% confidence region in average chirp mass - local rate plane
- Figure 5 - Spectra from binary black holes for different mass distributions
- Supplement Figure 1 - Magnetic correlated noise budget
Figure 1 - Narrowband estimator for Omega_GW
h=figure; % load in data tmp=load('figure1.dat'); freq=tmp(:,1); Omega0=tmp(:,2); two_sigma=tmp(:,3); %set font size set(0,'defaultaxesfontsize',18); %parameters for plotting fmin=20; fmax=85.75; % band containing 99% of sensitivity Omega_range=3.5e-5/0.68^2; % plot Omega0 vs f plot(freq, Omega0,'color',[.5 .5 .5],'LineWidth',2) hold on % plot +/- 2 sigma error bars plot(freq,two_sigma,'k','LineWidth',2) plot(freq,-two_sigma,'k','LineWidth',2) hold off % make axes grid on xlabel('Frequency (Hz)') ylabel('\Omega_0') axis([fmin fmax -Omega_range Omega_range]) print(gcf,'-depsc','figure1.eps')
Figure 2 - 95% confidence region in Omega_alpha-alpha plane
figure; %load contours tmp=load('figure2_initial.dat'); a_init=tmp(:,1); Om_init=tmp(:,2); tmp=load('figure2_O1.dat'); a_O1=tmp(:,1); Om_O1=tmp(:,2); tmp=load('figure2_design.dat'); a_des=tmp(:,1); Om_des=tmp(:,2); %set up figure gg = axes; set(gg,'FontSize',18); % plot Initial LIGO-Virgo contour semilogy(a_init,Om_init,'k','linewidth',2) hold on % plot O1 contour semilogy(a_O1,Om_O1,'b','linewidth',3) % plot Design contour semilogy(a_des,Om_des,'linestyle','--','linewidth',2,'color',[0.5 0.5 0.5]) % set up grid and legend grid on xlabel('\alpha','FontSize',18); ylabel('\Omega_{\alpha}','FontSize',18); legend('Initial LIGO-Virgo','aLIGO O1','Design','Location','NorthEast') axis([-5 5 1e-12 1e-3]) ax=gca; set(ax,'XTick',[-5:5]); set(ax,'YTick',[1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3]); grid minor
Figure 3 - Limits and models across many decades in frequency
figure('units','normalized','position',[0 0 1 0.4]) % parameters for font size hh = axes; set(hh,'FontSize',15) fs=15; %font size for labels lw=1.5; %line width for curves green=[0 0.8 0]; %RGB vector for plotting dark green % Plots are made in this order: PI curves (Initial LV, O1, Design, H1-H2, % Indirect Limits, CMB, LISA), Pulsar Limit, Earth's normal modes, BNS, BBH, % slow-roll inflation % Initial LIGO-Virgo PI curve tmp = load('PICurve_InitialLV.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'k','linewidth',lw); hold on text(1e-3,1e-3,'Initial LIGO-Virgo','FontSize',fs,'Color','k') % O1 PI Curve tmp = load('PICurve_O1.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'b','linewidth',lw); text(1e-1,1e-5,'aLIGO O1','FontSize',fs,'Color','b') % Design PI Curve tmp = load('PICurve_design.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'Color',[0.5,0.5,0.5],'LineWidth',lw,'LineStyle','--'); text(7e2,5e-6,'Design','FontSize',fs,'Color',[0.5 0.5 0.5]); % H1H2 PI Curve tmp=load('PICurve_H1H2.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'Color','r','linewidth',lw) text(2e3,7.7e-4,'H1-H2','Color','r','FontSize',fs) % Indirect Limits % Phys. Rev. X 6, 011035 tmp=load('figure3_IndirectLimits.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'Color',[0.4 0.4 0.4],'LineStyle','-','linewidth',lw) text(1e-9,1e-5,'Indirect Limits','FontSize',fs,'Color',[0.4 0.4 0.4]) % CMB % Phys. Rev. X 6, 011035 tmp=load('figure3_CMB_LowL.dat'); freq=tmp(:,1); Om=tmp(:,2) * 2; % Convert 1 to 2 sigma loglog(freq,Om,'Color','m','LineWidth',lw) text(2e-16,1e-13,'CMB','FontSize',fs,'color','m') % LISA % Phys.Rev. D88 (2013) no.12, 124032 tmp=load('PICurve_LISA.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'Color',[1 0 0],'LineWidth',lw,'linestyle','--') text(1e-4,1e-11,'LISA','FontSize',fs,'color',[1 0 0]) % Pulsar limit % Phys. Rev. X 6, 011035 freq=2.8e-9; Om=2.291035e-10; loglog(freq,Om,'color',green,'Marker','p','MarkerSize',5,'markerfacecolor',green) text(1.5e-9,5e-11,'Pulsar','FontSize',fs,'Color',green) text(1.5e-9,0.5e-11,'Limit','FontSize',fs,'Color',green) % Earth normal modes % Phys. Rev. D 90, 042005 freq = [0.309 0.679 0.938 1.11 1.72 2.09 2.41 2.52 3.21 3.23 4.03 4.06 4.33 4.84]*1e-3; Om = [0.039 0.039 0.040 0.048 0.041 0.045 0.042 0.044 0.035 0.035 0.036 0.036 0.15 0.12]; scatter(freq,Om,30,'r','filled') text(3e-10,1e-1,'Earth''s Normal Modes','color','r','FontSize',fs); % BNS tmp=load('figure3_BNS.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'color',green,'linewidth',lw) text(3e3,2e-12,'BNS','FontSize',fs,'Color',green) % BBH (using "3-Delta Distribution" model) tmp=load('figure3_BBH.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'m-','linewidth',lw) text(3e1,2e-12,'BBH','FontSize',fs,'Color','m') % Slow roll inflation tmp=load('figure3_inflation.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'linestyle','-','color','b','linewidth',lw) text(1.5e-3,4e-15,'Slow-Roll Inflation','FontSize',fs,'Color','b','Rotation',-2) % Plotting options axis([1e-20 1e9 1e-16 1e0]) grid on xlabel('Frequency (Hz)','FontSize',fs) ylabel('\Omega_{GW}','FontSize',fs) set(hh,'YTick',[1e-16 1e-14 1e-12 1e-10 1e-8 1e-6 1e-4 1e-2 1],'fontsize',fs) set(hh,'XTick',[1e-20,1e-18 1e-15 1e-12 1e-9 1e-6 1e-3 1 1e3 1e6 1e9],'fontsize',fs) % put box around region for figure 5 line([10 1e3],[1e-11 1e-11],'color','k','linewidth',lw); line([10 1e3],[1e-6 1e-6],'color','k','linewidth',lw); line([10 10],[1e-6 1e-11],'color','k','linewidth',lw); line([1e3 1e3],[1e-6 1e-11],'color','k','linewidth',lw);
Figure 4 - 95% confidence region in average chirp mass - local rate plane
figure; clf %load contours tmp=load('figure4_initial_BNS.dat'); M_init_n=tmp(:,1); R_init_n=tmp(:,2); tmp=load('figure4_initial_BBH.dat'); M_init_b=tmp(:,1); R_init_b=tmp(:,2); tmp=load('figure4_O1_BNS.dat'); M_O1_n=tmp(:,1); R_O1_n=tmp(:,2); tmp=load('figure4_O1_BBH.dat'); M_O1_b=tmp(:,1); R_O1_b=tmp(:,2); tmp=load('figure4_design_BNS.dat'); M_des_n=tmp(:,1); R_des_n=tmp(:,2); tmp=load('figure4_design_BBH.dat'); M_des_b=tmp(:,1); R_des_b=tmp(:,2); % set up plot leg=zeros(1,3); % for legend gg = axes; set(gg,'FontSize',18); % Initial LIGO-Virgo leg(1)=loglog(M_init_n,R_init_n,'k','linewidth',2); hold on loglog(M_init_b,R_init_b,'k','linewidth',2); % O1 leg(2)=loglog(M_O1_n,R_O1_n,'b-','linewidth',2); loglog(M_O1_b,R_O1_b,'b-','linewidth',2); % Design leg(3)=loglog(M_des_n,R_des_n,'--','linewidth',2,'color',[0.5 0.5 0.5]); loglog(M_des_b,R_des_b,'--','linewidth',2,'color',[0.5 0.5 0.5]); % Add rectangle separating BNS from BBH sep_rect=rectangle('Position',[2 1 0.5 1e7],'FaceColor',[0.8 0.8 0.8],'EdgeColor',[0.8,0.8,0.8]); uistack(sep_rect,'bottom'); line([2 2+0.5],[1 1],'color','k') line([2 2+0.5],[1e7 1e7],'color','k') text(1.2,5,'BNS','fontsize',18) text(4,5,'BBH','FontSize',18) % CBC Limits % flat-log distribution rate_med=30; rate_min=30+43; rate_max=30-21; mc_med=16.1; mc_min=14.6; mc_max=20; plot([mc_med mc_med],[rate_min rate_max],'k','linewidth',2); plot([mc_min mc_max],[rate_med rate_med],'k','linewidth',2); text(17,9,'Flat','fontsize',15) % power-law distribution rate_med=99; rate_min=99+138; rate_max=99-70; mc_med=8.6; mc_min=5.7; mc_max=11; plot([mc_med mc_med],[rate_min rate_max],'k','linewidth',2); plot([mc_min mc_max],[rate_med rate_med],'k','linewidth',2); text(7,16,'Power','fontsize',15) % Make Axes, etc grid on xlabel('M_c (M_{solar})','FontSize',18); ylabel('R_{local} (Gpc^{-3} yr^{-1})','FontSize',18); legend(leg,'Initial LIGO-VIRGO','aLIGO O1','Design') axis([0 100 1 1e7])
Figure 5 - Spectra from binary black holes for different mass distributions
% figure options figure('units','normalized','position',[0 0 0.6 0.6]); hh = axes; fs1 = 18; %axis font size fs2 = 18; %axis label font size fs3 = 13; %legend font size fs4 = 15; %label font size lw=1; %linewidth for BBH spectra set(hh,'FontSize',fs1) leg=zeros(1,5); % Flat log distribution tmp=load('figure5_flatlog.dat'); freq=tmp(:,1); omegaFlatMin=tmp(:,2); omegaFlatMean=tmp(:,3); omegaFlatMax=tmp(:,4); % Poisson uncertainty band cut = freq <= 1000 & freq>=10 & omegaFlatMin>0 & omegaFlatMax>0; ff2 = freq(cut); X_stat1a = [ff2; flipud(ff2)]; Y_stat1a = [omegaFlatMin(cut); flipud(omegaFlatMax(cut))]; leg(3) = loglog(freq,omegaFlatMean,'r-','linewidth',lw); hold on leg(4) = fill(X_stat1a, Y_stat1a, [1 0.8 0.8]); % Power law distribution tmp=load('figure5_powerlaw.dat'); freq=tmp(:,1); omegaPowerMin=tmp(:,2); omegaPowerMean=tmp(:,3); omegaPowerMax=tmp(:,4); % Poisson uncertainty band cut = freq <= 1000 & freq>=10 & omegaPowerMin>0 & omegaPowerMax>0; ff2 = freq(cut); X_stat2a = [ff2; flipud(ff2)]; Y_stat2a = [omegaPowerMin(cut); flipud(omegaPowerMax(cut))]; leg(2)= fill(X_stat2a, Y_stat2a, [0.4 0.8 0.8]); loglog(freq,omegaPowerMin,'-','linewidth',2,'Color', [0.4 0.8 0.8]); loglog(freq,omegaPowerMax,'-','linewidth',2,'Color', [0.4 0.8 0.8]); leg(1)= loglog(freq,omegaPowerMean,'color','g','linewidth',lw); % Plot boundaries for flat log distribution % (done here so that they lie on top of Poisson bands) loglog(freq,omegaFlatMean,'r-','linewidth',lw); loglog(freq,omegaFlatMin,'--','linewidth',2,'Color', [1 0.8 0.8]); loglog(freq,omegaFlatMax,'--','linewidth',2,'Color', [1 0.8 0.8]); % 3-Delta Distribution tmp=load('figure5_3delta.dat'); freq=tmp(:,1); omegatot=tmp(:,2); leg(5)=loglog(freq,omegatot,'k-','linewidth',lw); % PI Curves % O1 tmp=load('PICurve_O1.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'Color','b','LineStyle','-','linewidth',lw); text(32,3e-7,'aLIGO O1','color','b','fontsize',fs4); % Design tmp=load('PICurve_design.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'Color',[0.5 0.5 0.5],'LineStyle','--','linewidth',lw); text(5.5e1,2e-8,'Design','color',[0.5,0.5,0.5],'FontSize',fs4); % Legend and axes ll=legend(leg,'Flat, Mean','Flat, Poisson','Power, Mean','Power, Poisson','3-Delta','Location','Northeast'); set(ll,'FontSize',fs3); axis([10 1000 1e-11 1e-6]) xlabel('Frequency (Hz)','FontSize',fs1) ylabel('\Omega_{GW}','FontSize',fs1) grid on grid minor
Supplement Figure 1 - Magnetic correlated noise budget
figure; % Plot power-law fit to noise budget % Omega(f) = A * (f/fref)^a with fref=1Hz A=1.2e-8; a=-0.9; freq=[20 100]; Om=A*freq.^a; loglog(freq,Om,'k','linewidth',2); hold on % Plot PI Curve tmp=load('PICurve_O1.dat'); freq=tmp(:,1); Om=tmp(:,2); loglog(freq,Om,'k--'); % plotting options grid on set(gca,'fontsize',15); xlabel('Frequency (Hz)','fontsize',15) ylabel('\Omega_{\rm GW}','fontsize',15) axis([20 100 1e-14 1]) legend('O1 PI Curve','Correlated Noise Budget','location','southwest')