

GRAVITATIONAL WAVES: A NEW WINDOW ON THE UNIVERSE

Stephen Fairhurst

for the LIGO Scientific and Virgo Collaborations

References

Phys. Rev. X 6, 041015 (2016)

GW150914: PRL 116, 061102 (2016)

GW151226: PRL 116, 241103 (2016)

General Relativity

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Matter tells space how to curve.

Space tells matter how to move.

- John Wheeler

General Relativity

$$\frac{D^2 X^\mu}{dt^2} = R^\mu{}_{\nu\rho\sigma} T^\nu T^\rho X^\sigma$$

Matter tells space how to curve.

Space tells matter how to move.

- John Wheeler

Τμ

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Linearized gravity

- Flat, empty space is a solution to general relativity.
- Leading order correction, $h_{\mu\nu}$, satisfies wave equation
- These waves create a tidal distortion in space-time, $h=\frac{\delta L}{L}$

Generating gravitational waves

- Time varying mass quadrupole generates gravitational waves
- Binary system is ideal

$$h \sim \left(\frac{GM}{c^2R}\right) \left(\frac{GM}{c^2r}\right)$$

$$P \sim \frac{GM^2v^6}{c^5R^2}$$

Generating gravitational waves

- Time varying mass quadrupole generates gravitational waves
- Binary system is ideal

$$h \sim \left(\frac{GM}{c^2R}\right) \left(\frac{GM}{c^2r}\right)$$

For a black hole:

$$R_{\mathrm{Sch}} = rac{2GM}{c^2}$$

A global network

LIGO The Scale of the Challenge

 10^{-22} change in length of a LIGO arm: $10^{-18}~\mathrm{m}$

LIGO The Scale of the Challenge

ground motion: 10^{-8} m $(10^{10} \times \text{bigger})$

Quadruple pendulum suspension system: **10**⁷

+

Active seismic

isolation: 103

thermal vibrations:
10⁻¹² m
(10⁶ × bigger)

Ultra-high
mechanical quality
(Q ~ 10⁶) fusedsilica optics

isolates thermal motion into narrow frequency bands

O1 Data Taking

O1 Data Taking

- In September 2015, we were in the final stages of preparation for first Advanced LIGO data run (O1).
- The very last step is a short "Engineering Run," during which on Sept 14 our online monitor recorded GW150914.
- We identified the signal within 3 minutes
- We responded by starting the data run officially, keeping all settings fixed and ran for 16 live days coincidence time (long enough to assess background levels, etc)
- First GW announcement reported on that data.
- O1 data taking continued until 12 Jan 2016

Identifying the signals

Matched filtering

Binary Merger Search

- Use known waveforms to search for binary signals.
- Calculate Signal to Noise Ratio (SNR), ρ(t), identify maxima, and reweight by a χ² consistency measure.
- Require coincidence between detectors within 15 msec.
- Detection statistic: quadrature sum of the signal to noise in each detector.
- Background: Time shift by multiples of 0.1 seconds and repeat search.

Statistical Significance

A black hole binary

 Orbits decay due to emission of gravitational waves

 Leading order determined by "chirp mass"

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{M^{1/5}} \simeq \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5}$$

A black hole binary

 Binary is at least sixty times as massive as the sun.

 Bodies are in orbit until centres are separated by a few hundred km.

What affects the waveform?

- Total mass -> Change in time scale
- Mass ratio and spins
 - -> Change in amplitude / frequency evolution ("total" spin has the dominant effect)

Cosmological effects

- Binary merger signal has a characteristic shape
 - Scales with the mass, M, of the system
- Redshift reduces observed frequencies
 - Indistinguishable from change in mass=> measure M (1+z)
- Amplitude scales
 - inversely with the co-moving distance, D_C
 - with the total mass, M
- Directly measure:
 - luminosity distance, $D_L = D_C (1 + z)$
 - Redshifted mass, M (1 + z)

Observed Signals

Masses

Stellar mass black holes

Spins

LIGO

Distance and sky position

Telescope Observations

Final mass and spin

Consistency with General Relativity

From Abbott et al, "Tests of general relativity with GW150914", 2016

Planned LIGO-Virgo Observing

Living Rev. Relativity 19 (2016), 1

LIGO Planned LIGO-Virgo Observing

(2016), 1

Expectations for future runs

Probability of observing

- N > 2 (blue)
- N > 10 (green)
- N > 40 (red)

highly significant events, as a function of surveyed time-volume.

Summary

- GW150914 and GW151226 are the first direct detections of GWs and the first observations of binary black hole mergers.
- GW150914 contains the most massive known stellar-mass black holes.
- GW150914 and GW151226 provide the opportunity test General Relativity in the large velocity, highly nonlinear regime.
- LIGO resumed the search for gravitational waves on November 30, 2016.
- We expect to observe many more binary black hole mergers in the coming years, as well as binaries containing neutron stars.
- Continue to look for electromagnetic counterparts to gravitational wave signals.