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1 Relevant Results:

Let us start by giving a small summary of the important dependencies for the
displacement ASD generated by Newtonian Noise, as encountered by our sim-
plified model.

• The ASD is directly proportional to the absorbed power Pinput.

• The time that bubbles remain inside the pipe does not affect the ASD
level.

• The ASD is proportional to
(
dNbub

dt

)− 1
2 which is reminiscent of the depen-

dence for shot noise.

• The velocity of the fluid flow seems to only be relevant on the ’fading out’
of the bubbles outside the region of interest.

• Assuming an inverse square law for the fade-out function for the bubbles,
the ASD is directly proportional to vflow.

• Interpolating different regimes can give you a hard time on the frequency
domain.

2 Preliminary Assumptions:

2.1 Multipole expansion vs. monopole term

To model the density fluctuation noise we will abstract the pipe system to a
single point mass located one meter away from the test mass, which will also be
modeled by a point mass for the sake of order of magnitude estimates.

These assumptions are justified by the following two facts:
First, the force gradient due to mass fluctuations is proportional to the axial

acceleration (as opposed to its gradient). The greatest axial acceleration on the
test mass is produced by masses on its symmetry axis.

Second, the monopole term for the axial force (which is the point mass to
point mass contribution) satisfies 1.1Fmonopole > F . This is shown in figure 1.
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Figure 1: Comparison between the full multipole expansion for the axial force
and the monopole term for masses in the symmetry axis of the test mass.

It can be seen that the corrections add up to less than 10% of the monopole
term and so for the mass fluctuations we will use only this one.

2.2 Pipe mass fluctuation

We will model just a relevant section of the pipe, with the bubbles inside it
pushing the liquid outside the region of interest too fast for the timescales con-
sidered in the calculation. So that effectively a snapshot of the relevant section
of the pipe looks like the ones shown in figure 2, where the liquid is displaced
and the gas bubbles retain their density.

Figure 2: A depiction of the simplified model of the pipe. The mass on the
relevant section of the pipe depends on the size and number of bubbles inside it

In the case of multiple bubbles on the relevant pipe section, each bubble will
be set to grow at the same rate.
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3 Noise Estimation Equation:

The acceleration produced by a point massM onto another point mass separated
by a distance r is given by:

a =
GM

r2
; (1)

Where G = 6.674[Nm2/Kg2] is the gravitational coupling constant.
Suppose now that the mass M fluctuates about a mean value M0 such that

M(t) = M0 + ∆M(t). Then we can model the differential acceleration as:

∆a =
G

r2
∆M ; (2)

Corresponding to the mass fluctuations of this point mass.
Given the linear relationship between a and ∆M , to model the ASD of the

displacement associated with a we only need to scale the Amplitude of ∆M
according to:

|∆x(ω)| = ∆a

ω2
=

G

ω2r2
|∆M(ω)| (3)

4 Mass Fluctuation model

The rate of mass evaporation is given by:

dm

dt
=

P

lvap
(4)

Where P is the power dissipated by the cooling system of the outer shield and
lvap is the latent heat of vaoprization of nitrogen. This means that at any point
that bubbles are not leaving the pipe, the volume occupied by them increases
by:

dVbub
dt

=
P

lvapρgas
(5)

Meaning that the amount of mass that gets pushed out of the pipe due to the
expansion of the bubbles is given (in this simple model) by:

dMliq

dt
= −ρliq

P

lvapρgas
(6)

Finally, the change of mass in the pipe is due to both the growth of the bubble
(gaseous mass) and the liquid that gets pushed out.

dM

dt
=
dm

dt
+
dMliq

dt
= −

(
ρliq
ρgas

− 1

)
P

lvap
(7)

This implies that whenever bubbles are not entering/leaving the pipe,the mass
of the pipe decreases as:

M(t) = M0 −
(
ρliq
ρgas

− 1

)
P

lvap
t (8)
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4.1 Instant Leaving Model:

The first leaving model assumes three basic things:

• The bubbles can appear uniformly on the pipe and do not interact with
each other or the walls of the pipe.

• The bubbles share the total growth from the power consumption evenly,
meaning that if there are N bubbles at any given time, the power used to
grow one of them goes as P/N .

• The bubbles leave the pipe abruptly after reaching the end of it.

With these assumptions, each time a bubble leaves, we get a jump on M(t). To
model the Newtonian Noise, we will use the following numbers:

• ρliq = 808.6Kg/m3, density of liquid nitrogen at boiling point and 1 atm.

• ρgas = 4.6Kg/m3, density of gaseous nitrogen at boiling point and 1 atm.

• lvap = 2× 105J/Kg, the latent heat of vaporization at 1 atm and regular
boiling point ( 77K).

• P ≈ 600J/s the estimated power drained by the outer shield.

For fixed physical parameters (P, ρliq, ρgas, lvap) the dominant factor of the ASD
curve turns out to be the bubbling rate of the pipe, defined as the number of
bubbles generated per second on the pipe (dNbub

dt ). Larger bubbling rate implies
more bubbles in the pipe at any given time and consequently more frequent but
smaller jumps when bubbles leave the relevant area.

The effect of the bubbling rate on the ASD can be seen on the figure 3below:

Figure 3: Displacement ASD generated by different instances of the Newtonian
Noise model. For a fixed travel time on the pipe of 10 seconds various bubbling
rates are compared.

It can be inferred directly form figure 3 that the amplitude of the mass

fluctuations goes as |M(ω)| ∝
(
dNbub

dt

)− 1
2 . This is reminiscent of the way that
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Shot noise behaves and it might not be a mere coincidence (We should explore
this more).

On the other hand, for a fixed bubbling rate, the time spent by the bubbles
on the pipe does not affect the ASD of the mass fluctuation. This can be seen
on figure 4

Figure 4: Displacement ASD generated by different instances of the Newtonian
Noise model. For a fixed bubbling rate of 10 bubbles per second different travel
times are compared.

This model, while very simple, with the dissapearances of bubbles gives us
insight on the general behavior of the ASD curve. Moreover, the dependencies
turn out to hold even for slightly more complicated models that smoothly fade
bubbles out of the area of influence.

4.2 Fade Models:

We next turn to investigate what happens if we add a fade out function to
the bubbles. So that instead of dissappearing abruptly from the pipe, their
contribution to the relevant mass slowly fades out. We test three simple fade
models before turning to a more physical one, just for the sake of investigating
their influence on the ASD.

The first fading function is the instant fade, which is exactly what we had
before. Bubbles abruptly dissapear after reaching the end of the relevant area.

The second one is a linear fade. Which turns the mass of the bubble off
linearly up to a fading time.

The third one is a smooth fade, which is a refined version of the linear fade
with zero first and second derivative at the fading ends.
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Figure 5: Displacement ASD generated by different instances of the Newtonian
Noise model. For a fixed bubbling rate of 10 bubbles per second different fade-
out smoothings are compared. For the non-instant fades we set a fading time
of 1 second. (Distances are 1m)

As shown in figure 5, the fade out smoothing can have a strong impact on the
predicted ASD for the model and should be addessed as an important feature of
the model. However, to get a stronger sense of the right fade out function that
our system might have, we need to make an explicit choice for the geometry of
our piping system.

4.3 Inverse-Square fade

One argument that can be made about the fading out of the bubbles is that
their influence goes away as the inverse of their distance to the test mass. So if
R0 gives the original distance that the point mass modeling the relevant section
of the pipe, the influence of a bubble goes as:

Fbubble = F0

(
R0

R

)2

= F0

(
1

1 + v̄
R0
t

)2

(9)

Where the last equality was obtained assuming that the bubble moves away
(on the test mass’s axis) with a constant speed. In practice, this speed can be
approximated by the speed of the fluid flow on the pipe.

With these assumptions (Plus R0 = 1m), we get the displacement ASD
shown in the Figure 6.
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Figure 6: Displacement ASD for the mass fluctuation, in both cases the speed
of the flow is set to 1 m/s.

The fading functions for both curves are shown in Figure 7. This tells us
that eliminating the sharp corners on the transition of the bubbles has a string
impact on the high frequency part of the displacement ASD.

Figure 7: The smoothed and unsmoothed transitions for the bubbles used for
the simulations on Figure 6.

In any case we can try to describe the effect that the speed change will have
on the ASD, results are shown on Figure 8.
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Figure 8: Comparison of different flow velocities on the ASD. In accordance
with the equation 9.

It can be inspected directly from Figure 8 that the ASD is linear with respect
to the fluid flow’s speed.
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