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1 Introduction

This manuscript presents analytical calculations to estimate the Newtonian
noise generated by density fluctuations in a flowing liquid coolant in the vicinity
of the test mass of a gravitational-wave interferometer. Such fluctuations would
occur during the boiling of the liquid nitrogen in the cryogenic shields suggested
in [1], that would serve to hold the test mass at its operating temperature.

These calculations draw insight from the theory of boiling and nucleation1,
as well as theory on the spectrum of general point processes, especially renewal
shot noise2.

In order to keep the discussion clear, we will start the estimates by making
a preliminary set of assumptions that we will refine as we gain more insight
about the details of the physical processes involved. The hope is that with
each estimate the reader will gain more intuition about the parameters that
drive this source of Newtonian noise and, ultimately, a picture of the design
choices that could be made to suppress this noise coupling in third-generation
gravitational-wave interferometers.

The note is structured as follows:

• The second section lays out the simplifying assumptions of the model.
These result in the noise being an integral of a regular (Poisson) shot noise
process, with an amplitude controlled by the rate of bubble nucleation
in the cryogenic array and the characteristic size of the nucleated vapor
bubbles.

• The third section dives into the theory of boiling and nucleation in order
to gain insight on the parameters driving the noise amplitude, culminating
with a first estimate of the Newtonian noise coupling.

• The fourth section reviews the shortcomings of the original shot noise as-
sumption in the light of the theory of boiling and nucleation. We introduce
renewal shot noise to provide a more refined Newtonian noise estimate.

1See [2] or [3] for a comprehensive high level summary.
2See [4] for a great seminal paper in the subject and [5] for a modern overview of the ideas

and equations we will utilize.
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• The fifth and final section is dedicated to a discussion of the results, with
an emphasis on the implications for the design of the cryogenics for third
generation gravitational-wave observatories.

2 Density Newtonian noise as a shot noise pro-
cess

2.1 Simplifying assumptions:

To start out calculations, we assume most of the Newtonian noise is generated
by ‘relevant’ segments of pipe that contain liquid nitrogen in the vicinity of the
test mass, as depicted in Figure 1.

We will assume that all bubble nucleation occurs in the relevant sections of
the pipe. Gas bubbles are created in the tubes and they push the liquid away
rapidly compared to the timescales of interest3. As a result, the gravitational
acceleration caused by a section of pipe in front of the test mass like the one in
Figure 1 fluctuates over time, depending on the size of the bubbles growing and
moving inside it.

To further simplify the calculations, we will consider only the mass fluctua-
tions of the tube segments, neglecting the noise contribution from the specific
motion of the bubbles4. Additionally, we assimilate the mass of the tube seg-
ments and that of the test mass to point masses for an order-of-magnitude
assessment.

Under these assumptions, the spectral density of the displacement of the test
mass will be given by:

|δx̂(f)| = Cx
(2πf)2

G

d2
0

|δM̂(f)| (1)

where d0 is the distance between the test mass and the liquid and δM represents
the fluctuation in the mass of the relevant pipe section. Cx has been included
as a geometric factor related to the exact positioning of the pipe section (or
sections) relative to the longitudinal direction of the test mass.

To model the mass fluctuation of the contents of a section of the pipe, we
start by assuming that liquid nitrogen evaporation accounts for a fraction Q̇evap

of the heat absorption of the shield. So, the rate of mass evaporation is given
by:

dMg

dt
=
Q̇evap

hlg
, (2)

where hlg is the latent heat of vaporization of nitrogen. If we assume, as stated
before, that the gas pushes the liquid away from the relevant section of the pipe

3The liquid phase density fluctuations propagate approximately with the speed of sound
in liquid nitrogen, which we assume to be orders of magnitude larger than the speed of the
fluid flow.

4The contribution of bubble motion can be shown to be smaller than that of the bubble
mass fluctuation.
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Figure 1: Schematic of the simplifying
assumptions for Newtonian noise calcula-
tions. (1) The we will only consider the
gravitational interaction of the test mass
and a segment (or segments) of pipe near
it where all boiling happens. (2) When
bubbles grow in the relevant sections, they
push away all the incompressible liquid. (3)
The mass of the relevant section increases
when a bubble leaves it. (4) We will sim-
plify the geometry of the relevant sections
and the test mass to that of point particles.

faster than the timescales we care about; then the volume of gas inside the pipe
grows as:

dVbub

dt
=
Q̇evap

hlgρg
(3)

Meaning that the mass that gets pushed out of the pipe due to this growth is
given by:

dMl

dt
= −ρl

Q̇evap

hlgρg
(4)

Combining these together, we can model the change of mass content in the pipe
due to bubble growth and the liquid that gets pushed out.

dM

dt
=
dMg

dt
+
dMl

dt
= −

(
ρl
ρg
− 1

)
Q̇evap

hlg
(5)

Equation (5) represents the rate of change of the mass of the tube whenever
bubbles are not entering or leaving the segment of interest. Bubbles will leave
at random times after travelling down the pipe, which ultimately creates an
equilibrium void fraction inside the tube. These random leaving times are what
will create the fluctuating acceleration that drives the Newtonian noise in this
simplified model.

2.2 Shot Noise equations:

We will model the effect of bubbles exiting the relevant section by assuming
bubbles inside the pipe have a characteristic size V0 and leave at random, inde-
pendently distributed and memoryless times ti. In this case, we modify equation
(5) and obtain the more general equation:

dM

dt
= −

(
ρl
ρg
− 1

)
Q̇evap

hlg
+ (ρl − ρg)V0

∑
i

h(t− ti) (6)
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Where h is a window function that represents the derivative of the mass when
a bubble leaves the tube. Naturally, a steady state is found only if the average
mass of the tube does not grow with time. Which means as much gas volume
is leaving the tube as it is being generated inside. Using the equation for the
average of the Poisson process (Campbell’s theorem) [6] leaves for the steady
state:

Q̇evap = hlgρgV0
dN

dt
. (7)

Where dN
dt is the rate of bubble nucleation5 inside the relevant section,

which can be estimated by using the nucleation site density n and the aver-
age nucleation rate per site fnuc. To obtain equation (7) we used the fact that∫
h(τ)dτ = 1, since the window function represents a bubble fully leaving the

pipe.
Note that (7) is exactly what we would expect for the power absorption by

vaporization in the relevant section of the tube. It is simply the energy needed
to evaporate bubbles of volume V0 at a rate given by dN

dt .
The (single-sided) amplitude spectral density of the shot noise process (6)

with zero mean is given by [6]:∣∣∣∣∣δ ˆ(
dM

dt

)
(f)

∣∣∣∣∣ =
√

2(ρl − ρg)V0

√
dN

dt
|h(f)|. (8)

Integrating equation (9) gives the mass fluctuation of a segment of tube:∣∣∣δM̂(f)
∣∣∣ =

1

2πf

√
2(ρl − ρg)V0

√
dN

dt
|h(f)|. (9)

For simplicity, let us consider the extreme case where the window function h(t)
is a delta function (which represents the bubbles leaving the tube instantly6).
In this case the spectrum (8) is flat and the amplitude spectrum for the test
mass displacement is simply:

|δx̂(f)| =
√

2
Cx

(2πf)3

G

d2
0

(ρl − ρg)V0

√
dN

dt
(10)

Where, as mentioned before, d0 is a characteristic distance between the test
mass and the cryogen and Cx is a dimensionless O(1) geometric factor related
to the geometric arrangement the liquid tubes relative to the mass.

2.3 Discussion:

The simple shot noise estimate has a couple of features that remain true even
among more involved calculations.

5It is technically the rate at which bubbles leave the relevant pipe section. It will equal
the nucleation rate if bubbles don’t coalesce or break up as they travel inside the pipe.

6This is an extreme case, which represents an upper limit for our noise estimate
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First, there is the general 1/f3 dependence of the Newtonian noise, which
is common for other forms of gravity gradient noise. In reality, we expect even
higher suppression for this noise at high frequencies, due to the fact that bubbles
do not leave the relevant section of the tube instantly, but rather their influence
decays over time as they move away from the test mass.

Additionally, we appreciate that the noise is directly proportional to the
characteristic volume7 V0 of the bubbles in the relevant section, as well as to
the square root of the nucleation rate dN

dt . The closure relation for the power

absorbed (7) implies that for a given amount of power Q̇evap the aforementioned
variables are not independent. In general, to obtain values for the nucleation
rate and the absorbed power it is necessary to specify the details of the geometry
of the cryo array.

However, it is possible to get an order of magnitude estimate for V0 and
dN
dt under a generic set of assumptions by examining the details of the boiling

process.

3 Boiling and Nucleation:

A large portion of the literature on boiling and nucleation is devoted to the study
of the conditions for safe and efficient operation of cooling systems. In conse-
quence, the focus of the theory is often placed on the heat transfer characteristics
of the process rather than on the mechanical details of it. This latter ones being
the ones we need for the Newtonian noise estimates. Moreover, many results
are obtained from fully empirical correlations, and theoretical models only have
limited success in reproducing experimental observations.

Therefore, our main objective in this section is to obtain reasonable values
for V0 and dN

dt , with the understanding that our estimates are good only within
an order of magnitude.

The interested reader is referred to [2] for an in-depth review of the concepts
showcased here. Since most of the classical theory of boiling was developed for
water and high power applications like nuclear reactors, we will complement it
with specific research on cryogenic liquids when necessary.

3.1 Nucleation in flow boiling

Flow boiling corresponds to a situation where a fluid (the coolant) is ran through
a device to be cooled, and at some point in the flow, the liquid changes phase.
The inception of boiling greatly enhances the heat transfer characteristics of the
fluid. The magnitude and mechanisms for this improvement vary depending on
the flow regime and even the orientation of the flow.

In what follows, we will only consider the regime where nucleate boiling8

happens. That is, when boiling happens at the surface of vapor trapped in

7As per [6], in general it is the RMS value of the volume that enters the spectral density
equation.

8As opposed to film boiling and forced convection evaporation.
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individual holes and crevices of the pipe walls, otherwise known as nucleation
sites.

Figure 2: Simplified depiction of the nucleation cycle. (1) Nucleation starts with vapor

trapped in crevices on the heated surface. (2) The heat of the wall starts creating a

superheated boundary layer of liquid. (3) The trapped vapor starts growing once the

boundary layer is hot enough to support bubble growth against the surface tension.

(4) The bubble will continue to grow beyond the size of the cavity, picking up the

boundary layer. (5) When the buoyancy of the vapor is enough to overcome the forces

attaching the bubble to the surface, the bubble initiates its departure. (6) As the

bubble departs from the nucleation site, it disrupts the boundary layer on the wall,

cold liquid rushes in on its wake, and the cycle starts anew.

Figure 2 shows a cartoon of the process of nucleate boiling. It is generally
divided in three stages: a waiting period to establish a superheated boundary
layer (1 and 2 in the figure), bubble growth (3 and 4) and bubble departure (5
and 6). After the bubble departs it disturbs the superheated layer, cold liquid
flows in, triggering another waiting period and restarting the cycle. We will
provide an overview of each step of the process, which will ultimately lead to
an estimate of V0 and dN

dt

3.2 Nucleation site activation and the waiting period.

When cold liquid flow is in contact with a superheated wall, a thin thermal
boundary layer forms [2]. This layer has a temperature gradient that goes from
the temperature of the heated surface Tw to that of the bulk liquid Tl which
for most purposes can be approximated as being linear. Similarly, the no slip
condition at the surface makes it so near the heated walls the liquid can be
considered as quiescent.
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Since the type of nucleation we will study (heterogeneous nucleation) is an
interfacial phenomenon, most of the equations in what follows will depend on
the thickness δ of the thermal boundary layer. Its value can be estimated by
δ = Hfc

κl
. Where Hfc is the forced-convection heat transfer coefficient and κl is

the thermal conductivity of the liquid.
Nucleation starts when a vapor bubble trapped in a nucleation site is sur-

rounded by superheated liquid hot enough that the vapor pressure inside the
bubble can overcome the surface tension of the boundary. The equilibrium con-
dition for the vapor pressure and surface tension is usually expressed with by
using the Clausius-Clapeyron equation and yields:

TB − Tsat =
2σTsat

RBρghlg
(11)

Which expresses the minimum bubble superheat needed to grow bubbles of a
radius RB. Similarly, the radius of the smallest bubble that will not collapse
given a superheat of ∆Tsup = Tw − Tsat is R∗ = 2σTsat

∆Tsupρghlg
.

Bubbles will continue to grow as long as they are surrounded by liquid hotter
than their interior. This implies that nucleation will successfully happen only
if the thickness δ of the thermal boundary layer is large enough to support the
growth of the bubbles.

In that sense, even though less wall superheat is needed to grow bubbles in
larger cavities (as per equation (11)), the thickness of the thermal boundary
layer imposes an upper limit on the size of the bubbles that can grow. The
result is that for a given wall superheat only cavities with a radius RC in a
range RC,max ≥ RC ≥ RC,min can be active nucleation sites. The size range can
be estimated by:

RC,max, RC,min =
δ

2C1

∆Tsup

Tw − Tl

[
1±

√
1− C1

C2

8(Tw − Tl)Tsatσ

∆T 2
supδρghlg

]
(12)

Where C1 and C2 are geometric constants9. Their assumed values vary across
different articles in the literature [7][8][9]. We will follow the example of [8],
who use C2 = 1 and derive C1 = 3

2 based on the isothermal curves around a
hemispherical bubble on a cavity.

We also observe that there are regions of physical parameters for which
equation (12) does not have any real solutions. Meaning that for a given wall
superheat it is not possible to sustain bubble nucleation. This can happen
because the thermal boundary layer is too thin10, or because the temperature
gradient in the layer is too steep11.

The point where the competing effects balance out and nucleation is first
possible is called the Onset of Nucleate Boiling (ONB) point and can be found

9C1 is the ratio of the distance between the wall and the point where the liquid has the
temperature of the bubble interior TB and the cavity mouth radius. C2 is the ratio of bubble
radius to cavity mouth radius.

10This happens when the fluid flow is very fast, enhancing Hfc
11Which happens when the bulk liquid is highly subcooled
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by setting the radical of equation (12) to zero. In a heated channel, we can
expect no nucleation to happen upstream of the ONB point.

Despite the range suggested by equation (12), Bald [10] argues that the
maximum active cavity radius in the case of cryogenic liquids is determined by
their wetting capabilities. Owing to the fact they have very low contact angles
[11], they will tend to flood large cavities and deactivate them entirely, giving
a value for RC,max smaller than predicted by (12). This observation will be
relevant later when we discuss the suppression of nucleation.

3.2.1 Waiting time

The waiting time is the time needed to establish a superheated layer next to
an active cavity. A simple model for it considers the heat conduction to a
semi-infinite medium until the thickness of the boundary layer is able to sustain
nucleation [8]12. In this model, the waiting time is approximately given by:

tw =
1

παl

 3
2RC (Tw − Tl)

Tw − Tsat

(
1 + 2σ

RCρghlg

)
2

(13)

Note that equation (13) is just the time it takes for the heat of the wall to diffuse
and increase the temperature at y = 3

2RC from the wall to the required TB for
bubble growth. αl = κl

ρlcp,l
is the thermal diffusivity of the liquid.

3.3 Bubble growth:

Bubble growth at a nucleation site follows a three-regime pattern. first growing
in an inertia-controlled regime (pressure and surface tension dominant), a tran-
sition regime, and then growing in a heat transfer controlled regime (where the
evaporation rate dominates growth). A full model for both stages of growth of
a bubble in both an an uniform and nonuniform superheated liquid is presented
in [12].

Since we will mainly consider the case of saturated boiling in this manuscript,
it is reasonable to consider the case of an uniform temperature equal to the wall
temperature Tw. Additionally, owing to the properties of cryogenic liquids, the
expected duration of the inertia-controlled stage of growth is very short. Hence,
it is sufficient to only model the heat transfer dominated stage of growth. The
radius of a growing bubble is then:

RB(t) =

√
12

π
Ja
√
αlt =

√
12

π

ρlcp,l∆Tsup

hlgρg

√(
κl

ρlcp,l

)
t (14)

12More complicated arguments include the temperature variation of the heated surface [3]
or the collapse of a bubble after a previous nucleation [10], but we will utilize the simpler
argument here to give an order-of-magnitude estimate.
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We will note, that the general functional form RB = β
√
t, with β = f (Ja)

√
αl,

is common in modelling bubble growth even under different assumptions13

[13][14][15][16]. These models might be worth considering if a more detailed
analysis of the heat transfer characteristics of the cryo shields is to be per-
formed. The Jakob number Ja =

ρlcp,l∆Tsup

hlgρg
is the ratio of sensible heat to

latent heat in the evaporation process.

3.4 Bubble departure:

When the bubble grows sufficiently large, it can overcome the forces binding
it to the surface where it’s growing. Different authors [10] [17] argue that in
the case cryogenic liquids on metallic surfaces the low contact angles (< 15o

as per [11]) make it so that bubbles separate due to breaking with the edge of
the nucleation sites where they grow. Following [10] and [18], the analysis for
bubble detachment is carried by considering the equilibrium between buoyancy,
surface tension, drag and inertial forces. In the case where we can ignore the
dynamic forces, the bubble departure radius can be estimated by a balance
between buoyancy and surface tension only [19]:

Rd = 3

√
3

2

σRC
g(ρl − ρg)

(15)

The total growth time for a bubble will then be simply given by substituting
equation (15) into the bubble growth equation (14). We will then assume that
the representative bubble volume V0 from equation (10) is equal to the bubble
departure volume Vd = 4π

3 R
3
d.

3.5 Nucleation rate at a single site:

Following the departure of a bubble from an active nucleation site, the cycle
restarts with the reestablishment of the boundary layer. Consequently, for a
single nucleation site, we expect the nucleation frequency to be:

fnuc =
1

td + tw
. (16)

Experimental observations [8][20] show that in reality there is a degree of
variability on the time between successive nucleating bubbles, mostly owing to
fluctuations on the waiting time tw. We will come back to this point when we
refine the model for the Newtonian Noise.

13A common, important assumption is that a microlayer of liquid forms between the growing
bubble and the heated surface. This mechanism for bubble growth is frequently referenced in
the modern literature, but not commonly used in analysis of cryogenic liquids, at least to the
author’s knowledge.
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3.6 Active nucleation site density:

Estimating the number of active nucleation sites is a very challenging task,
highly dependent on surface finish and on the interaction between the liquid and
the heated surface. On top of that, since nucleation happens in cavities with
some amount of preexisting gas, it is possible to enhance or suppress nucleation
for the same surface depending on what happens before the inception of boiling.

The number of active nucleation sites is generally estimated by empirical
correlations. In this case we will use the correlation by Zhokhov [21] as found
in [22]14 for the number of nucleation sites per unit area as a function of the
minimal radius R∗:

n = Cn

(
2

R∗

)m
= Cn

(
∆Tsupρghlg

σTsat

)m
(17)

with

{
m = 2, Cn = 10−7 for P/Pcr < 0.04
m = 3, Cn = 625× 10−16m for P/Pcr ≥ 0.04.

With Pcr being the critical pressure of the fluid, about 33.5 atm for nitrogen.

3.7 How much heat is absorbed in nucleate boiling?

It is generally agreed that during nucleate boiling there are three main com-
ponents to the heat transfer: Single phase convection, evaporation and surface
quenching. Summaries of this model in the case of pool boiling can be found in
[24] and [23]. The heat transfer per unit area for each mechanism in the isolated
bubble regime can be estimated by:

Forced Convection: q̇fc = (1− α)Hfc(Tw − Tl) (18)

Evaporation: q̇evap =
4π

3
R3
dρgnfnuchlg (19)

Surface Quenching: q̇sq = α
2√
π
fnuc

√
twklρlcp,l(Tw − Tl) (20)

Where α is the fraction of area influenced by bubble growth and it is generally
estimated as α = Kn(πR2

d) with 2 ≤ K ≤ 5 [25]. The surface quenching term
is related with reestablishing the boundary layer for nucleation, as discussed in
Figure 2.

The three terms’ relative contribution to the heat absorbed depends on the
number of active nucleation sites, liquid subcooling and wall superheat. The
fraction of heat absorbed by evaporation can go as low as a few percent in the
isolated bubble regime [3][25] or be the dominant source for heat transfer close
to the critical heat flux15 [17].

14We use this correlation because of both its simplicity and the fact it was used success-
fully in [23] to predict experimental data on subcooled liquid nitrogen boiling. Since it was
developed for the case of pool boiling, we expect the accuracy of the prediction to drop as we
properly consider the boundary layer thickness δ in the case of flow boiling.

15The critical heat flux is the maximum amount of heat that can be absorbed by nucleate
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3.8 Discussion and notes about the models.

The preceding section has focused in showing the main elements that go into
modelling the nucleation cycle. The purpose is mainly to illustrate the impor-
tant concepts and details, and we will use them to give an order-of-magnitude es-
timate for the Newtonian Noise. However, since the experimental conditions for
boiling are very complicated, the mechanstic models thus presented sometimes
have inaccuracies predicting the exact values for the bubble radius, nucleation
frequency and number of nucleation sites that are observed in practice.

It is often the case in the literature of boiling heat transfer that researchers
utilize or develop empirical correlations to estimate these parameters for their
specific experimental conditions. A good account of correlations and models
can be found in [26] and [27], the reader is encouraged to get acquainted with
the different models16. Nonetheless, for our purposes the simple mechanistic
models will provide sufficient knowledge for an order-of-magnitude estimate of
the Newtonian noise.

3.9 First Newtonian Noise estimate:

Our first estimate for the Newtonian Noise starts by considering the a represen-
tative size of the bubbles that can nucleate at a given wall superheat

RC ≈ 3R∗ =
6σTsat

∆Tsupρghlg
. (21)

Obtained as the active cavity size at the ONB by setting the radical of equation
(12) to zero17.

For the time being, let’s consider the case of saturated boiling Tl = Tsat. In
this event, the waiting time after nucleation is given by:

tw =
9

4παl

(
RC

1− R∗

RC

)2

=
81

16παl
(3R∗)

2
(22)

The growth time is given by combining equations (14) and (15) as:

td =

(
Rd
β

)2

=
π

12αl

(
9

2

σ

(ρl − ρg)

) 2
3
(

hlgρg
ρlcp,l∆Tsup

)2

(R∗)
2
3 (23)

The number of nucleation sites will follow the high pressure case for equation
(17), since we assume that the liquid will need to be pressurized slightly above

boiling without inducing a transition to film boiling. Film boiling is a highly inefficient heat
transfer mechanism and thus a safety hazard for high power cooling applications.

16Caution is advised, the authors have found errors in the quoted equations in the review
papers, we recommend reviewing the original articles whenever possible.

17This is similar to the approach used in [22]. We consider it a more reasonable approach
than using RC,max from equation (12) since it does not consider cavity flooding for high
wetting liquids (such as LN2).
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1 atm in order to flow. Consequently, the expected number of nucleation sites
is given by:

N =
(
5× 10−13 m

)
(R∗)

−3
A. (24)

Where A is the area of the heated surface. Naturally, given our analysis, the
nucleation rate is simply: dN

dt = N
td+tw

.

Finally, it can be noted that the set of equations (21-24) are all dependent
on the superheat of the cryogenic shield ∆Tsup. In a real system, the operating
superheat will be a function of the heat load and the geometry of the array. We
will give an order of magnitude assessment by considering values of ∆Tsup such

that the fraction of the power absorbed by evaporation Q̇evap is less than the
heat load of the cooling array. A (very) conservative estimate for the heat load
is around 200 W, given the design considerations of [28].

The results of the calculations are shown in Figure 4 for a couple of different
(yet reasonable) values for the wall superheat. The approximate values for the
physical parameters of nitrogen were taken from [29]. They are summarized in
Table 1 together with the estimated values for the geometric factors of the cryo
shield.

Symbol Description Approximate Value
ρl Liquid density 830 kg/m3

ρg Gas phase density 3 kg/m3

σ Surface tension 10−2 N/m
cp,l Liquid specific heat 2100 J/kgK
Tsat Saturation temperature 77 K
hlg Latent heat of evaporation 2× 105 J/kgK
kl Liquid thermal conductivity 0.15 W/mK
αl Liquid thermal diffusivity 8.9× 10−8 m2/s
Tl Liquid bulk temperature 77 K
D Pipe diameter 0.01 m
L Individual pipe length 1 m
Npipes Number of cryo pipes 4
d0 Distance to test mass 0.5 m
Cx Geometric factor 1

Table 1: (Top) Estimated values for physical parameters of Nitrogen, taken from
[29]. (Bottom) Estimated values for the geometric and engineering parameters of the
cryo array. Note that for our estimate we consider the case of saturated boiling. The
geometric variables are defined in Figure 3.
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Figure 3: Geometry of the cryo system for the Newtonian noise calculations. The

values for each parameter are summarized in Table 1. For simplicity, we consider 4

tubes 60 degrees of the longitudinal direction from the test mass. We also simplify

the masses of each tube to lie in the vertical midpoint of the array. Since the noise

for every tube is considered to be independent, the geometric factor of this array is

Cx = 4 cos2 (60o) = 1.

Symbol Description Calculated Values Units
∆Tsup Wall superheat 0.5 , 1.5 , 2.0 K
RC Representative cavity radius 12 , 4.1 , 3.1 µm
Rd Bubble departure radius 0.27 , 0.19 , 0.17 mm
td Bubble growth time 140 , 7.5 , 3.5 ms
tw Waiting time 2.7 , 0.30 , 0.17 ms
fnuc Nucleation frequency 7 , 130 , 270 Hz
n Active nucleation site density 0.74 , 20 , 47 sites/cm2

Q̇evap Power absorbed by evaporation 0.38 , 63 , 240 W

Table 2: Calculated values for the nucleation parameters based on equations (17-23)
and the values of Table 1. We evaluate three conditions for the wall superheat (0.5,
1.5 and 2.0 K) to cover the likely operating range for the cryo shield. The values for
Q̇evap consider the geometry shown in Figure 3.
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Figure 4: First estimate for the Newtonian noise coupling using the Poisson model

(10). For reference, The nucleation frequencies fnuc estimated for ∆Tsup = 0.5, 1.5 and

2 K; were 7, 130 and 270 Hz respectively. All of the values for important parameters

for the estimates are summarized Tables 1 and 2.

3.9.1 Discussion:

There are a few conclusions we can immediately draw by looking at the simple
estimate from Figure 4:

• The expected noise amplitude falls as 1/f3. In reality this dependence
will roll off due to the finite growth and travel time of the bubbles.

• The noise amplitude increases as the heat absorbed by evaporation Q̇evap

increases. The reason for this increase can be traced in our model to the
drastic increase of the nucleation rate for high wall superheats:

• We note that for nitrogen, in the range of parameters we are considering,
td/tw < 10 and it is a reasonable estimate to make fnuc = 1/td. In that
case

V0

√
dN

dt
∝ β (R∗)

− 5
6 and V0

dN

dt
∝ β2 (R∗)

− 8
3 (25)

We know that β is an increasing function of the wall superheat18 and the
critical radius R∗ decreases with it. The end result is that when the wall

18This is true under other assumptions about bubble growth too.
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superheat increases, both the power absorbed and the Newtonian noise
will increase.

In consequence, if we want to mitigate the Newtonian noise coupling by
a factor of 10, we would have to sacrifice on a factor of more than 100 of
the heat transfer gains from the evaporation component of boiling.

• The estimated noise amplitude is below the design sensitivity for LIGO
Voyager [28] for Q̇evap < 200 W. This is the (conservative) estimate for
the heat load on the outer shield of the cryo array.

Apart from these conclusions, our dive into the theory of boiling and nu-
cleation exposed a couple oversights in the original argument for modelling the
Newtonian Noise coupling. The most important of them has to do with the
inherent periodicity of the nucleation process. Followed closely by the fact that
neighboring nucleation sites exert influence on one another [16].

The first of these two points will cause peaks in the displacement spectrum
at fnuc and its harmonics, and could potentially be a dealbreaker in terms of
using boiling as the main heat transfer mechanism during operation of the in-
terferometer. While the second one can potentially increase the overall baseline
of the coupling estimated in Figure 4 by coherently adding the influence of
neighboring nucleation sites.

We will qualitatively address the influence of these two phenomena by bor-
rowing from the literature on quasiperiodic point processes in the next section.
Concluding with a quantitative estimate that addresses the first point about the
appearance of spectral peaks.

4 Renewal Shot Noise

This section introduces the concepts needed to make a refined estimate for the
spectra shown in Figure 4. The main ingredient we will use are results from
renewal theory and the spectrum of renewal point processes. Renewal shot noise
allows us to analyze the spectrum of the Newtonian noise if the release times
between two successive bubbles are not independent.

In what follows we will show the most important results in an informal
language suited for the discussion on Section 5. The precise mathematical for-
mulations of equations can be found in [4], also summarized in [5]19. For more
general renewal theory information regarding renewal theory [30] is a good ref-
erence.

4.1 Theoretical overview:

A point process is a discrete (but infinite) collection of events in a mathematical
space. For our purposes, they will represent the set of times {ti} in which a
given nucleation site starts the nucleation cycle anew.

19Renewal shot noise is of interest to the neuroscience community, where it is used to model
the spectra of firing neurons.
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The (possibly time-dependent) rate r(t) of the process is the average number
of occurrences {ti} in a short time interval around a time t of interest.

Consider the δ−spike train associated with the point process:

φ(t) =
∑
i

δ(t− ti) (26)

Then the rate is just an ensemble average over different realizations of the point
process: r(t) =< φ >ens. If the process is stationary and ergodic, the rate is
constant and we can change the ensemble average by a time average. For our
estimates, the rate of the point process is simply the nucleation frequency at a
single nucleation site, thus r = fnuc.

Additionally, given a function h(t) (like the one in equation (6)) that rep-
resents a physical response that repeats itself at intervals {ti} from a point
process, the function H(t) formed by the superposition of those responses is a
convolution of h with the δ−train of the process:

H(t) =
∑
i

h(t− ti) = (h ∗ φ)(t) (27)

The average (or DC value) of H is given by Campbell’s theorem [6]:

< H >= r

∫ ∞
−∞

h(τ) dτ, (28)

And the amplitude spectrum of fluctuations around the mean is:

|δĤ(f)| = |ĥ(f)|δφ̂(f)|. (29)

This last equation can be seen as the Fourier transform of equation (27), where
we subtracted the DC value of the signal.

In consequence, the determination of the spectrum of H hinges on determin-
ing the spectrum for the δ−train associated with the point process.

4.1.1 The spectrum of the δ−train:

Following the Wiener-Khinchin Theorem, the power spectrum of φ can be re-
lated to the autocorrelation function of the δ−train. Since we are considering
a stationary process, in order to compute the autocorrelation it is sufficient to
know the conditional probability that there will be another event at a time t = τ
given that there was one at time t = 0.

This analysis eventually leads to the following expression for the (single
sided) power spectrum of the fluctuations of φ [4][5]:

|δφ̂(f)|2 = 2r

(
1 + 2Re

( ∞∑
n=1

ρ̂n(f)

))
(30)

Where ρn(τ) is the probability density of the n−th order time interval. Or the
conditional probability that the n−th bubble after will come out at time t = τ ,
given that a bubble came out at time t = 0.

16



From equation (30) it is evident that the defining variables of the spectrum
are the probability distributions between different nucleated bubbles. Therefore,
by choosing an appropriate set of ρn, it is possible to refine the estimate from
Figure 4.

4.1.2 Spectrum of a renewal process:

For simplicity, we will model the nucleation cycle as a Renewal process, that is as
a set of independent and identically distributed interarrival times τi = ti+1− ti
between successive nucleating bubbles, all drawn from the same probability
distribution ρ1(τ).

The intuition behind this choice is that the set {τi} represents the waiting
and growth times of a each bubble generated in a nucleation site. We consider
each bubble to be generated independently, which is a more accurate picture
for nucleation than the Poisson shot noise presented before20. The distribution
ρ1(τ) can be found from experimental observations [8][20].

Since different bubbles are independent, we have ρ̂n(f) = (ρ̂1(f))
n
. Sub-

stitution in (30) and a geometric series yield the spectrum of the δ−train at a
single site:

|δφ̂(f)|2 = 2r

(
1− |ρ̂1(f)|2

|1− ρ̂1(f)|2

)
(31)

We conclude the estimate by assuming that the nucleation sites are all inde-
pendent, which implies that their renewal spectra add in quadrature [31]. If we
assume (conservatively) that all of them nucleate at the same rate r = fnuc and
possess the same distribution ρ1(τ), the amplitude spectra for the Newtonian-
noise induced displacement will be given by a modified version of equation (10):

|δx̂(f)| =
√

2
Cx

(2πf)3

G

d2
0

(ρl − ρg)V0

√
dN

dt

√
1− |ρ̂1(f)|2
|1− ρ̂1(f)|2

(32)

As a side note, the Poisson shot noise is recovered in (32) by choosing ρ1(τ) as
the exponential distribution21.

4.2 Qualitative remarks about renewal shot noise

Figure 5 shows a comparison of the renewal shot noise spectrum between differ-
ent choices for the internucleation time distribution ρ1. For illustrative purposes,
all distributions have the same nucleation frequency r = fnuc = 100 Hz.

The first thing that can be appreciated is that as ρ1 becomes more centered
around its mean, peaks start to emerge in the amplitude spectrum. The peaks

20In the Poisson shot noise assumption, all times {ti} are considered independent. Under
the renewal shot noise assumption only the difference between successive times is considered
independent. This change alone will allow us to account for the inherent periodicity of the
nucleation process.

21This is related to the fact that the exponential distribution is the only memoryless dis-
tribution. No time interval is different from the others, implying that there is no long-range
order and no special frequencies for the spectrum to peak at.
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appear at multiples of fnuc and become sharper as deviations around the average
internucleation time decrease.

It can also be noted that all the spectra look flat at high enough frequencies.
For timescales shorter than the deviations around the mean, the renewal process
looks as random as the regular shot noise22. As a side note, choosing ρ1 the
exponential distribution recovers the Poisson shot noise (flat) spectrum.

Finally, the spectral density is always smaller at low frequencies for the
Renewal processes than for the Poisson process. This observation was also made
by Bartlett [4], and it is related to the decreased variance of the probability
distribution ρ1 relative to its mean. It is also mentioned in [4] that effects
like clustering (or, in our case, correlations between adjacent nucleation sites)
increase the low-frequency content of the spectra. These two competing effects
could conceivably cancel each other out, but by no means do they imply that
the spectral peaks would disappear.

Figure 5: Comparison between the spectra of the δ−train defined in equation (26) for

point processes with the same event rate but different distributions. (Left) Example

distributions for the difference between successive nucleation times τi = ti+1 − ti.

(Right) Generalized shot noise spectra associated with each different distribution. The

exponential distribution, which represents the case of Poisson shot noise, is included

for comparison.

4.3 Newtonian noise estimate with renewal shot noise

In order to refine the estimate from Figure 4 with renewal shot noise, we need
to select a distribution ρ1(τ) that describes the observed behavior of the time
interval between nucleations at the same site. Based on the results from [8]
and the internucleation distribution plotted in [20], we decided to use a gamma
distribution:

22An interpretation is that the high frequency components cannot capture the long-timescale
order between successive nucleations.
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ρ1(τ) = pk,θ(τ) =
1

Γ(k)θk
τk−1e−

τ
θ , τ ≥ 0, (33)

which has the advantage of both being flexible and easy to compute. The Fourier
transform of this distribution is:

ρ̂1(f) =
1

(1− 2πiθf)k
. (34)

For our calculations, we choose k and θ such that the average time satis-
fies < τ >= td + tw and the standard deviation is one percent of the mean23

(
√
< ∆τ2 >/τ = 0.01). The results of the Newtonian noise modelling with

equation (32) are shown in Figure 6. The parameters used are the same as for
Figure 4, and are summarized in Tables 1 and 2.

Figure 6: Second estimate for the Newtonian noise coupling, this time including

insight from renewal theory. The values for all parameters are identical to those of

Figure 4. The peaks in the spectrum correspond to the multiples of the nucleation

frequencies (fnuc= 7, 130 and 270 Hz) for each condition.

4.4 Discussion:

We can observe that the inclusion of the periodic effects has a big impact on
the estimated Newtonian noise coupling. First, we observe there are peaks at

23This choice is based on the observation that tw/td in Table 2 was in the range of a percent.
It leads to k = (0.01)−2 and θ = (td + tw)/k.
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multiples the nucleation frequencies fnuc for each different value of the wall
superheat. The peaks in the spectra reach as high as an order of magnitude
above their flat spectrum values. Our order-of-magnitude estimates remain
below the LIGO Voyager design sensitivity from [28], but the presence of peaks
would still make the Newtonian noise one of the primary contributors to the
noise budget for the interferometer.

Another important observation from Figure 6 is that due to the overall 1/f3

dependence of the noise, it is advantageous to have a higher value of fnuc. That
way, if there is any peaking, it will occur where the Newtonian noise’s baseline
is thousands of times below design sensitivity.

As a side-note, we will also mention that these estimates represent a worst-
case scenario where all of the active nucleation sites nucleate at a frequency
fnuc. In reality, the effects of different sites will tend to average out, smoothing
the peaks and potentially leading to a lower coupling at low frequencies.

5 Summary of results and discussion:

The results shown on figures 4 and 6 and the important insights from the theory
of nucleation as well as point processes are summarized below:

• The estimated levels of Newtonian noise for a cryogenic array were esti-
mated to be below the design sensitivity of LIGO Voyager for a reasonable
set of parameters and a heat load of Q̇ < 200 W. This holds true even
if we consider that all nucleation sites have a characteristic nucleation
frequency fnuc.

• The noise spectrum falls off as 1/f3, with the possibility of extra suppres-
sion at higher frequencies due to the finite travel time of the bubbles.

• The inherent periodicity of the nucleation process can lead to peaks in
the Newtonian noise spectrum. The peaks appear at multiples of the
nucleation frequency and can rise above the noise’s baseline by an order
of magnitude.

• Clustering effects, like the correlation between nearby nucleation sites have
the potential to increase the low frequency component of the Newtonian
noise.

• The baseline for the Newtonian noise increases with increasing nucleation
frequency. However, since the peaks on the noise spectrum move to a
higher frequency, the 1/f3 suppression decreases their contribution to the
noise budget.

• From equation (23) we observe that the departure frequency increases as
we decrease the active cavity radius RC . Said differently, smaller bubbles
nucleate faster.

20



• Nucleate boiling will occur as long as cavities in the active range {RC,max, RC,min}
from equation (12) are available on the surface of the heated channel. Cav-
ity flooding and surface treatment could change this.

• Attempting to decrease the Newtonian noise can result in a significant
reduction of the heat transfer characteristics of the cooling array, as shown
in Figure 4.

• The results shown are only valid if we can disregard the interaction be-
tween bubbles. At high enough void fractions this is no longer true. Bub-
ble coalescence can form slugs that would have a more deleterious effect.

5.1 Recommendations for Design:

Given all of the information we have gathered, we believe it would be beneficial
to suppress nucleation for the steady state operation of the interferometers.
Primarily, due to the potential presence of spectral peaks, and secondarily, to
avoid other unintended couplings such as acoustic noise or scattered light noise
coming from the nucleation process.

In order of probable impact, here is a short list of the measures we think
would aid with the suppression of nucleate boiling during steady state operation
of the cryo array24:

• Use subcooled nitrogen: Nitrogen can remain liquid between approxi-
mately 63 and 77 K at a pressure of 1 atmosphere. A potential option to
suppress nucleation then is to run subcooled nitrogen (say, at 65 K) and
take advantage of the high specific heat to provide cooling.

– The range of temperatures where Nitrogen remains liquid can be
widened by increasing the operating pressure [29][32]. At a pressure
of 2 atm, the saturation temperature increases to about 84 K, with
little change on the freezing temperature or the specific heat. This
could be used to further amplify the liquid’s ability to absorb heat
without resorting to boiling.

• Surface treatment: The inner walls of the tubes can be treated to
reduce the number of potential nucleation sites. The main objective of
this treatment is to reduce the number of cavities in the active range (12)
given the likely cryo shield superheat ∆Tsup.

– An alternative way to think about this is that if we can ensure there
are no cavities of radius greater than a tolerance ε, then the wall su-
perheat needed to initiate nucleation is ∆Tsup ≥ 2σTsat

ερghlg
. For example,

if ε = 0.1 µm, we need Tsup ≥ 20 K to initiate nucleation.

24This is not an exhaustive list, and many of the options proposed can be used simultane-
ously to achieve good operating conditions for the cryo array.
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• Faster liquid Flow: An implicit assumption for the equations derived
in the theory of nucleation is that the thermal boundary layer δ is thick
enough to sustain nucleation. It is possible, to suppress nucleation without
surface treatment by flowing subcooled liquid at a high enough velocity:
through an increase in Hfc

25, we can reduce the thickness of the thermal
boundary layer, increasing the necessary wall superheat for the ONB.

• Surface Treatment + Artificial nucleation sites: In the event where
we would like to suppress nucleation but not completely give up on the
enhanced heat transfer characteristics of boiling, we can complement the
surface treatment approach with etching artificial nucleation sites. The
main points to consider are to keep the nucleation site density n low
enough to maintain the overall Newtonian noise level low and to use small
enough crevices such that their nucleation frequency fnuc is unlikely to
have a big impact on the interferometer’s noise budget (similar to the 2
K example from Figure 6).

References

[1] B. Shapiro, R. X. Adhikari, O. Aguiar, E. Bonilla, D. Fan, L. Gan,
I. Gomez, S. Khandelwal, B. Lantz, T. MacDonald, et al., “Cryogenically
cooled ultra low vibration silicon mirrors for gravitational wave observato-
ries,” Cryogenics, vol. 81, pp. 83–92, 2017.

[2] S. M. Ghiaasiaan, Two-phase flow, boiling, and condensation: in conven-
tional and miniature systems. Cambridge University Press, 2007.

[3] L. S. Tong, Boiling heat transfer and two-phase flow. Routledge, 2018.

[4] M. S. Bartlett, “The spectral analysis of point processes,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 25, no. 2, pp. 264–
281, 1963.

[5] B. Lindner, “A brief introduction to some simple stochastic processes,”
Stochastic Methods in Neuroscience, vol. 1, 2009.

[6] W. Van Etten, Introduction to random signals and noise. Wiley Online
Library, 2005.

[7] Y. Hsu, “On the size range of active nucleation cavities on a heating sur-
face,” 1962.

[8] H. Chi-Yeh and P. Griffith, “The mechanism of heat transfer in nucleate
pool boiling—part ii: the heat flux-temperature difference relation,” Inter-
national Journal of Heat and Mass Transfer, vol. 8, no. 6, pp. 905–914,
1965.

25Flow with higher Reynolds numbers have better forced convection heat transfer. See, for
example, the Dittus-Boelter correlation in [2].

22



[9] S. Kandlikar, “Heat transfer characteristics in partial boiling, fully devel-
oped boiling, and significant void flow regions of subcooled flow boiling,”
1998.

[10] W. Bald, “Cryogenic heat transfer research at oxford: Part 1—nucleate
pool boiling,” Cryogenics, vol. 13, no. 8, pp. 457–469, 1973.

[11] P. Brennan and E. Skrabek, “Design and development of a prototype static
cryogenic heat transfer system,’,” NASA CR-121939, 1971.

[12] B. Mikic, W. Rohsenow, and P. Griffith, “On bubble growth rates,” Inter-
national Journal of Heat and Mass Transfer, vol. 13, no. 4, pp. 657–666,
1970.

[13] D. Labuntsov, “Study of the growth of bubbles during boiling of saturated
water within a wide range of pressures by means of high-speed moving
pictures,” Teplofizika Vysokikh Temperatur, vol. 2, no. 3, pp. 446–453, 1964.

[14] M. Cooper, “The microlayer and bubble growth in nucleate pool boiling,”
International Journal of Heat and Mass Transfer, vol. 12, no. 8, pp. 915–
933, 1969.

[15] R. Cole and H. L. Shulman, “Bubble growth rates at high jakob numbers,”
International Journal of Heat and Mass Transfer, vol. 9, no. 12, pp. 1377–
1390, 1966.

[16] N. I. Kolev and N. Kolev, Multiphase flow dynamics, vol. 1. Springer, 2005.

[17] Y. A. Kirichenko, L. Slobozhanin, and N. Shcherbakova, “Analysis of
quasi-static conditions of boiling onset and bubble departure,” Cryogen-
ics, vol. 23, no. 2, pp. 110–112, 1983.

[18] Y. A. Kirichenko, V. Tsybul’Skii, M. Dolgoi, K. Rusanov, and I. Kono-
valov, “Effect of pressure on internal characteristics of nitrogen and oxygen
boiling,” Journal of engineering physics, vol. 28, no. 4, pp. 409–414, 1975.

[19] Y. A. Kirichenko, “Evaluation of the conditions of vapor bubble separation
during nucleate boiling,” Journal of engineering physics, vol. 25, no. 1,
pp. 811–817, 1973.

[20] D. Euh, B. Ozar, T. Hibiki, M. Ishii, and C.-H. Song, “Characteristics
of bubble departure frequency in a low-pressure subcooled boiling flow,”
Journal of nuclear science and technology, vol. 47, no. 7, pp. 608–617, 2010.

[21] K. Zhokhov, “Number of vapor-forming centers,” Trudy TsKTI, no. 91,
1968.

[22] Y. A. Kirichenko, M. Dolgoj, N. Levchenko, V. Tsybul’skij, L. Slobozhanin,
and N. Shcherbakova, “Study on cryogenic liquid boiling,” 1976.

23



[23] X. Li, W. Wei, R. Wang, and Y. Shi, “Numerical and experimental investi-
gation of heat transfer on heating surface during subcooled boiling flow of
liquid nitrogen,” International Journal of Heat and Mass Transfer, vol. 52,
no. 5-6, pp. 1510–1516, 2009.

[24] R. Judd and K. Hwang, “A comprehensive model for nucleate pool boiling
heat transfer including microlayer evaporation,” 1976.

[25] D. Kenning et al., “Fully-developed nucleate boiling: overlap of areas of
influence and interference between bubble sites,” International Journal of
Heat and Mass Transfer, vol. 24, no. 6, pp. 1025–1032, 1981.

[26] V. Guichet, S. Almahmoud, and H. Jouhara, “Nucleate pool boiling heat
transfer in wickless heat pipes (two-phase closed thermosyphons): A critical
review of correlations,” Thermal Science and Engineering Progress, vol. 13,
p. 100384, 2019.

[27] G. H. Yeoh and X. Zhang, “Computational fluid dynamics and popula-
tion balance modelling of nucleate boiling of cryogenic liquids: Theoretical
developments,” The Journal of Computational Multiphase Flows, vol. 8,
no. 4, pp. 178–200, 2016.

[28] R. X. Adhikari, O. Aguiar, K. Arai, B. Barr, R. Bassiri, G. Billings-
ley, R. Birney, D. Blair, J. Briggs, A. F. Brooks, et al., “A cryogenic
silicon interferometer for gravitational-wave detection,” arXiv preprint
arXiv:2001.11173, 2020.

[29] J. Jensen, R. G. Stewart, W. Tuttle, and H. Brechna, Brookhaven na-
tional laboratory selected cryogenic data notebook: sections I-IX, vol. 1.
Brookhaven National Laboratory, 1980.

[30] D. R. Cox, “Renewal theory,” 1962.

[31] B. Lindner, “Superposition of many independent spike trains is generally
not a poisson process,” Physical Review E, vol. 73, no. 2, p. 022901, 2006.

[32] R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, “Thermodynamic prop-
erties of nitrogen from the freezing line to 2000 k at pressures to 1000
mpa,” Journal of Physical and Chemical Reference Data, vol. 15, no. 2,
pp. 735–909, 1986.

24


	Introduction
	Density Newtonian noise as a shot noise process
	Simplifying assumptions:
	Shot Noise equations:
	Discussion:

	Boiling and Nucleation:
	Nucleation in flow boiling
	Nucleation site activation and the waiting period.
	Waiting time

	Bubble growth:
	Bubble departure:
	Nucleation rate at a single site:
	Active nucleation site density:
	How much heat is absorbed in nucleate boiling?
	Discussion and notes about the models.
	First Newtonian Noise estimate:
	Discussion:


	Renewal Shot Noise
	Theoretical overview:
	The spectrum of the -train:
	Spectrum of a renewal process:

	Qualitative remarks about renewal shot noise
	Newtonian noise estimate with renewal shot noise
	Discussion:

	Summary of results and discussion:
	Recommendations for Design:


