
Resampling FFT-based implementation of the F-statistic

Reinhard Prix and others . . . ∗

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-30167 Hannover, Germany
(Dated: 2017-04-04 18:31:48 +0200; commitID: 84927ee-CLEAN; LIGO-T1600531-v3)

Working notes on Resampling FFT-based Fstat calculation. Previous work in this [1, 2]

I. CHARACTERIZING THE RESAMPLING-FFT F-STATISTIC IMPLEMENTATION

A. Algorithm

There are essentially four different vector lengths over which various operations are performed in the Resampling-
FFT F-statistic code:

NFbin: The user-requested number of output frequency bins, with spacing df , for which the F-statistic is computed.

Ndet
samp: The (maximum over detectors) number of samples in the input timeseries (in the detector frame.

N src
samp: The (maximum over detectors) number of samples of the input timeseries, interpolated into the source-frame.

NFFT
samp: The length of the (zero-padded) timeseries on which the FFT is performed.

which are given by the following relations:
The sampling step dtdet of the input timeseries in the detector frame is given in terms of the frequency bandwidth

∆fsft of the input SFTs, namely

dtdet ≡
1

∆fsft
, (1)

n and the number of detector-frame time-samples are therefore

Ndet
samp =

T data
span

dtdet
= T data

span ∆fsft , (2)

where T data
span is the (maximum over IFOs) maximum data span, which is determined by the SFTs actually used and will

therefore be generally T data
span ≤ Tspan, where Tspan is the user-requested (or via segment list) length of the data-stretch

being analyzed. The length in time TFFT of the final timeseries to be FFT’ed is determined by the user-requested
frequency resolution df , namely

TFFT =
1

df/D
, with D ≡ dTspan dfe , (3)

where D ∈ N+ ensures that TFFT ≥ T data
span , which is easily achieved by zero-padding. This is required in order to

make sure we use all the data (zero-padding rather than truncating the timeseries) and therefore not lose SNR: in
the ’standard case’ of a fine frequency resolution df < 1/Tspan we have D = 1. But in cases where the user requests a
very coarse frequency resolution df > 1/T data

span we effectively increase the internal frequency resolution by an integer
factor D > 1, which allows us to easily return the requested frequency bins by only returning every D’th output bin.

With the original detector-frame sampling step dtdet this would correspond to

NFFT(0)
samp =

TFFT

dtdet
=

∆fsft

df/D
, (4)

time samples. However, in order to ensure the most efficient (and relatively most consistent) FFT performance, we
round the number of FFT bins to the next power of 2, namely

NFFT
samp = 2dlog2N

FFT(0)
samp e , (5)

∗ reinhard.prix@aei.mpg.de

2

which can be achieved by effectively decreasing the sampling step (increasing the frequency band) of the timeseries
in the source frame, i.e.

dtsrc ≡
TFFT

NFFT
samp

. (6)

The original time-series (without zero-padding) interpolated into the source-frame will therefore have N src
samp samples,

which can be expressed as

N src
samp ≡

T data
span

dtsrc
= RNFFT

samp , (7)

where we defined the frequency resolution R in terms of the the natural units 1/Tspan as

R ≡
T data

span

TFFT
= T data

span

df

D
≤ 1 , (8)

where D = 1 whenever df < 1/T data
span , see Eq. (3). From Eq. (2) and Eq. (4) we find as similar relation to Eq. (7) for

Ndet
samp:

Ndet
samp = RNFFT(0)

samp . (9)

The input SFT frequency band contains extra “frequency drift” sidebands ∆fdrift to account for Doppler shifts and
spindowns (from XLALCWSignalCoveringBand()), and an extra “transition band” ∆frolloff to allow for the roll-off
from the Hamming-windowed sinc-interpolation used in Barycentric resampling. 16 extra SFT bins (8 on either side)
to account for frequency “leakage” near the SFT edges. We can express this as

∆fsft = ∆fload

(
1 +

4

2 Dterms + 1

)
, (10)

where

∆fload = ∆f + ∆fdrift +
16

Tsft
, (11)

∆fdrift = 2.12× 10−4

(
fmax + |ḟ |max

Tspan

2
+ |f̈ |max

T 2
span

8
+ . . .

)
, (12)

and Dterms is the (user-specified) number of sinc-kernel terms to use (on either side, therefore the window-size is
2 Dterms + 1) in the barycentric resampling interpolation.

Note that these expressions are only approximative of what exactly happens in the F-stat codes, and due to the
power-of-two rounding of Eq. (5), this can in some cases lead to relatively large deviations from the actual measured
runtimes. Use the octapps function predictResampTimeAndMemory() for the most accurate (still not perfect, due to
numerical rounding issues) runtime prediction as a function of physical search parameters.

The “physical” number of requested output frequency bins is simply

NFbin =
∆f

df
. (13)

Note that for the GCT code ∆f is not just the user-input search frequency band ∆f0, but includes additional GCT
sideband bins (called extraBinsFstat in the GCT code) as well, namely

∆f = ∆f0 +
1

2

(
Tspan dḟ + T 2

span df̈
)
. (14)

B. Timing model

We can break the implementation of the Resampling F-statistic calculation into the following contributions with
respective scalings (referring to the time to compute an output vector of NFbin F-statistic values from a single detector :

3

1. Barycenter and interpolate the input detector-frame time-series into the source frame (accounting for Doppler-
shifts due to the Earth’s motion and any binary orbital motion of the source). This contribution contains terms
that scale with both input samples of the actual SFTs (in case of gaps), as well as N src

samp and Ndet
samp, but we

can postulate a rough scaling relation as

Tbary ∼ N src
samp τbary = RNFFT

samp τbary . (15)

Note that barycentering will only be performed once per sky-position and binary-orbital parameters, while
re-using the results for all different ḟ and f̈ bins via buffering, and so its average contribution will scale with

b = 1/N{ḟ ,f̈ ,...} ∈ (0, 1] ,

where N{ḟ ,f̈ ,...} is the total number of spindown-templates (of any order) per sky- and binary-orbital template.

For many cases of practical interest it will be possible to achieve b � 1 and in this case one can neglect the
barycentering contribution.

2. Apply spindown-correction and frequency shift to source-frame timeseries, which clearly scales with N src
samp, and

therefore

Tspin = N src
samp τspin = RNFFT

samp τspin . (16)

3. Apply the FFT, which operates on the zero-padded timeseries of length NFFT
samp, therefore

TFFT = NFFT
samp τFFT . (17)

4. various operations on NFbin output bins, such as copying the bins, normalizing them, computing F from Fa, Fb
and summing them over detectors Fa,b =

∑
X F

X
a,b (here considering time per detector), which can be summarized

as a time contribution per output frequency bin τFbin,

τFbin = (Tcopy + Tnorm + TsumFabX + TFab2F) /NFbin . (18)

Let us denote the total time spent computing NFbin output bins as Ttotal, and the pure “resampling” contribution
TRS excluding barycentering as

TRS ≡ Ttotal − b Tbary . (19)

We can combine this to yield the resampling time τRS per detector per output frequency bin assuming perfect buffering
as

τRS ≡
TRS

NFbin
= τFbin +

NFFT
samp

NFbin
[Rτspin + τFFT] , (20)

which will only be constant for different search setups if the ratio NFFT
samp/NFbin and the natural resolution R are

approximately constant. The total time to compute the F-statistic for one detector and NFbin output frequency bins
is

Ttotal = NFbin τ
eff
RS = NFbin

(
τRS + b∆τbary

RS

)
, (21)

where ∆τbary
RS is the time per frequency bin spent in barycentering, which is

∆τbary
RS ≡ Tbary

NFbin
=
NFFT

samp

NFbin
R τbary , (22)

and so using this together with Eq. (20) we can express the effective resampling time τ eff
RS per output frequency bin

(including the barycentering cost) as

τ eff
RS ≡

Ttotal

NFbin
= τRS + b∆τbary

RS = τFbin +
NFFT

samp

NFbin
[R (τspin + b τbary) + τFFT] , (23)

which asymptotes to the “fully-buffered” value τRS of Eq. (20) for b→ 0, i.e. for N{ḟ ,f̈ ,...} � 1.

4

C. Memory model for a multi-segment search

In a similar way to the timing model we can enumerate the amount of memory required to perform the resam-
pling+FFT calculation of the F-statistic over Nseg coherent segments.

• Objects stored for every segment of a semi-coherent search:

– the original SFTs turned into a detector-frame COMPLEX8 timeseries:

mem [multiCOMPLEX8TimeSeries-DET] = NdetN
det
samp ×mem [C8] ,

where for simplicity we assumes the timeseries of all detectors to be of similar length Ndet
samp.

– two timeseries interpolated and barycentered into the source frame, multiplied by a(t) or b(t), respectively:

mem [multiCOMPLEX8TimeSeries-SRC-[a|b]] = 2NdetN
src
samp ×mem [C8] .

• Objects stored only once for all segments, using a shared “workspace”:

– Two COMPLEX8 vectors for temporary storage of SRC-frame timeseries:

mem [TStmp[1|2]-SRC] = 2N src
samp ×mem [C8] ,

– One REAL8 timeseries holding time-differences between SRC and DET frames (only used for barycentering:

mem [SRCtimes-DET] = N src
samp ×mem [R8] .

– the FFTW plan: I couldn’t find a clear statement on the memory size of this, but I’m assuming it should
be roughly NFFT

samp COMPLEX8 numbers?

mem [FFT-plan] ≈ NFFT
samp ×mem [C8] .

– the input and output vectors for the FFT (currently not using in-place transform):

mem [FFT-input+output-vectors] = 2NFFT
samp ×mem [C8] .

– temporary storage of FXa,b and Fa,b until no longer needed:

mem [Fab] = 4NFbin ×mem [C8] .

• Objects returned from each F-stat call: (depending on user-request)

mem [F-stats return] = NFbin ×mem [R4] ,

mem
[
single-IFO FX return

]
= NdetNFbin ×mem [R4] .

where mem [C8] = mem [R8] = 8 bytes and mem [R4] = 4 bytes.
We can therefore express the different memory blocks as

mem [ResampWorkspace] =
[
3NFFT

samp (1 +R) + 4NFbin

]
× 8 bytes , (24)

mem [ResampMethodData-all] = Nseg NdetR
[
NFFT(0)

samp + 2NFFT
samp

]
× 8bytes , (25)

mem
[
F+FX return

]
= (1 +Ndet)NFbin × 4 bytes . (26)

5

1. Timing results based on ComputeFstatBenchmark[outdated]

Running 1000 trials of ComputeFstatBenchmark on a Thinkpad T520, using commandline options
$./ComputeFstatBenchmark --numSegments=1 --Tseg=216000 --Freq=1500 --f1dot=-1e-7 --numTrials=1000

yields the following results (where b = 1)

0

100

200

300

400

500

600

700

800

4e-08 5e-08 6e-08 7e-08 8e-08 9e-08

tauFbin [s]

0

100

200

300

400

500

4e-08 4.5e-08 5e-08 5.5e-08 6e-08 6.5e-08 7e-08 7.5e-08

tauSpin [s]

0

50

100

150

200

250

300

350

1e-08 2e-08 3e-08 4e-08 5e-08 6e-08 7e-08

tauFFT [s]

log2(NsFFT) <= 18
log2(NsFFT) >= 18

0

200

400

600

800

1000

2.6e-07 2.7e-07 2.8e-07 2.9e-07 3e-07 3.1e-07 3.2e-07 3.3e-07 3.4e-07

b*tauBary [s]

0

1e-05

2e-05

3e-05

4e-05

5e-05

0 1e-05 2e-05 3e-05 4e-05 5e-05

ta
uR

S
-m

ea
su

re
d

[s
]

tauRS-predicted [s]

measured
predicted

log2NsFFT<=18

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

0 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05 7e-05

ta
uR

S
ef

f-
m

ea
su

re
d

[s
]

tauRSeff-predicted [s]

measured
predicted

log2NsFFT<=18

6

2. Testing new timing model against new (windowed-sinc) Resampling code

Running 1000 trials of ComputeFstatBenchmark using commandline options (Dterms=8)
$./ComputeFstatBenchmark --numSegments=1 --Tseg=216000 --Freq=1499.95 --f1dot=-1e-07 --numTrials=1000
--Dterms=8

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3e-08 4e-08 5e-08 6e-08 7e-08 8e-08

tauFbin [s]

mean=4.3e-08 s

Dterms=8

0

5e+07

1e+08

1.5e+08

2e+08

3e-08 4e-08 5e-08 6e-08 7e-08 8e-08 9e-08

tauSpin [s]

mean=4e-08 s

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

1e-08 2e-08 3e-08 4e-08 5e-08 6e-08 7e-08

tauFFT [s]

lg2>18: mean=3.5e-08 s
lg2<=18: mean=1.6e-08 s

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07 5.5e-07 6e-07

tauBary [s]

mean=2.4e-07 s

10-7

10-6

10-5

10-4

10-7 10-6 10-5 10-4

ta
uR

S
-m

ea
su

re
d

[s
]

tauRS-predicted [s]

measured
predicted
(lg2<=18)

10-7

10-6

10-5

10-4

10-7 10-6 10-5 10-4

dt
au

R
S

B
ar

y-
m

ea
su

re
d

[s
]

dtauRSBary-predicted [s]

measured
predicted

7

Running 1000 trials of ComputeFstatBenchmark using commandline options (Dterms=32)
$./ComputeFstatBenchmark --numSegments=1 --Tseg=216000 --Freq=1499.95 --f1dot=-1e-07 --numTrials=1000
--Dterms=32

0

1e+08

2e+08

3e+08

4e+08

5e+08

3.5e-08 4e-08 4.5e-08 5e-08 5.5e-08 6e-08 6.5e-08 7e-08

tauFbin [s]

mean=4.1e-08 s

Dterms=32

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

3.5e-08 4e-08 4.5e-08 5e-08 5.5e-08 6e-08 6.5e-08

tauSpin [s]

mean=3.8e-08 s

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

1e-08 2e-08 3e-08 4e-08 5e-08 6e-08 7e-08

tauFFT [s]

lg2>18: mean=3.4e-08 s
lg2<=18: mean=1.5e-08 s

0

1e+07

2e+07

3e+07

4e+07

5e+07

5e-07 5.5e-07 6e-07 6.5e-07 7e-07 7.5e-07 8e-07 8.5e-07

tauBary [s]

mean=5.5e-07 s

10-7

10-6

10-5

10-4

10-7 10-6 10-5 10-4

ta
uR

S
-m

ea
su

re
d

[s
]

tauRS-predicted [s]

measured
predicted
(lg2<=18)

10-7

10-6

10-5

10-4

10-7 10-6 10-5 10-4

dt
au

R
S

B
ar

y-
m

ea
su

re
d

[s
]

dtauRSBary-predicted [s]

measured
predicted

8

3. Christians GCT timing results (24 runs) [outdated]

Using Christians 24 timing runs on a fast atlas node, we can compare this model to the obtained timing data.
As can be seen in Fig. ??, for NFFT

samp ≤ 218 the FFT seems to be about 30% faster (suspected due to fitting into
faster cache memory). However, overall this regime will be less efficient because it’s wasting more cycles on ∆fdrift

in relation to ∆f) (see Fig. 3). We therefore restrict the trials for τFFT to those cases where NFFT
samp > 218, but use all

the trials for the other coefficients. Using Eq. (23) this yields the timing coefficients

τFbin ≈ 6.1× 10−8 s , τFFT ≈ 3.3× 10−8 s , τspin ≈ 7.7× 10−8 s . (27)

0

1

2

3

4

5

6

6.5e-08 7e-08 7.5e-08 8e-08 8.5e-08 9e-08

tauSpin [s]

0

1

2

3

4

5

6

7

5e-08 5.5e-08 6e-08 6.5e-08 7e-08 7.5e-08 8e-08

tauFbin [s]

0

0.5

1

1.5

2

2.5

3

1e-08 2e-08 3e-08 4e-08 5e-08 6e-08 7e-08

tauFFT [s]

log2(NsFFT) <= 18
log2(NsFFT) >= 18

nodes 6,11

FIG. 1. Histograms over τspin (left), τFbin (right), and τFFT (bottom).

Finally, let us check if we can accurately predict the code’s Resampling parameters NFbin, NSampFFT etc from
the search parameters.

9

0

5

10

15

20

25

4e-08 5e-08 6e-08 7e-08 8e-08 9e-08

tauBayes [s]

0

1

2

3

4

5

6

1e-09 2e-09 3e-09 4e-09 5e-09 6e-09 7e-09

tauSumF [s]

FIG. 2. Histograms over τFFT (left), τspin (middle) and τFbin (right)

0

5e-07

1e-06

1.5e-06

2e-06

0 5e-07 1e-06 1.5e-06 2e-06

ta
uR

S
-m

ea
su

re
d

[s
]

tauRS-predicted [s]

measured
predicted

log2NsFFT<=18
nodes 6,11

1000

2000

3000

4000

5000

6000

1500 2000 2500 3000 3500 4000

T
im

eG
C

T
-m

ea
su

re
d

[s
]

TimeGCT-predicted [s]

measured
predicted

log2NsFFT<=18
nodes 6,11

FIG. 3. Left: Comparison of measured versus predicted resampling time τRS (from Eq. (20)), over all 24 trials.
Right: Comparsion of measured versus predicted total GCT runtime.

Appendix A: General useful relations for resampling F-statistic

Continuous-time function x(t), Fourier transform is defined as

x̃(f) ≡
∫ ∞
−∞

x(t) e−i2π f t dt , (A1)

and in the following we will refer to this function as the spectrum of x(t). The inverse operation is

x(t) =

∫ ∞
−∞

x̃(f) e+i2π f t df , (A2)

which can be shown using the fact that
∫∞
−∞ ei2π f

′(t−t′) df = δ(t− t′).

10

1. Sampling theorem for band-limited functions

Sampling theorem: Assuming the continuous function x(t) is band limited, which means that the spectrum x̃(f)
vanishes outside of the support [−W,W], i.e.

x̃(f) = 0 for |f | > W , (A3)

where W is the bandwidth, one can show [3] that x(t) is fully determined by a discrete timeseries {xj}∞j=−∞ given by

xj ≡ x(tj) , where tj ≡ j∆t , (A4)

with sampling frequency fs and stepsize ∆t given by

fs =
1

∆t
= 2W , ∆t ≡ 1

2W
. (A5)

Proof: In order to see this, let us first consider the impulse-sampled function

xp(t) ≡ ∆t

∞∑
j=−∞

xj δ(t− j∆t) , (A6)

with spectrum x̃p(f) obtain from Eq. (A1) as

x̃p(f) = ∆t

∞∑
j=−∞

xj e
−i2π f tj . (A7)

This can be seen as the Fourier series representation of the periodic spectrum x̃p(f + fs) = x̃p(f), with period fs.
Using the inverse transform Eq. (A2) to express xj , we can further obtain

x̃p(f) =

∞∑
n=−∞

x̃(f − n fs) , (A8)

where we used the identity in Eq. (B3). In other words, the spectrum of the discrete timeseries {xj} sampled from
x(t) at sampling rate fs is periodic with period fs and can be expressed as an infinite sum of replicas of the original
spectrum of x(t) shifted by fs. If the spectrum x̃(f) is band-limited within [−W, W] as assumed in Eq. (A3), and
x(t) is sampled at a rate fs ≥ 2W , then the shifted spectra do not overlap, and we can recover the original spectrum
x̃(f) from x̃p(f), simply via

x̃(f) = x̃p(f) for f ∈ [−fs/2, fs/2] . (A9)

Another way to formalize the relation between x̃ and x̃p is to write this as

x̃p(f) = x̃ (f ′(f)) , where f ′(f) = f − round

(
f

fs

)
fs . (A10)

We can therefore reconstruct the original continuous function x(t) from Eq. (A2). In other words, the discrete
timeseries {xj} fully determines x(t), via the chain

{xj}
Eq. (A7)−→ x̃p(f)

Eq. (A9)−→ x̃(f)
Eq. (A2)−→ x(t) . (A11)

If the shifted spectra x̃(f) overlap, i.e. if x(t) is not band-limited within [−fs/2, fs/2], then we cannot recover the
original spectrum x̃(f) from x̃p(f), and we speak of aliasing.

The explicit relation Eq. (A11) can be obtained by substituting Eq. (A7) into Eq. (A2) restricted to
∫ fs/2
−fs/2, which

yields the well-known sinc-interpolation formula

x(t) =

∞∑
j=−∞

xj
sin π δj(t)

π δj(t)
, with δj(t) ≡ fs t− j =

t− tj
∆t

. (A12)

11

2. Time-limited functions

Consider the additional constraint that x(t) vanishes outside the interval t ∈ [0, T], such that only {xj}N−1
j=0 6= 0,

and T = N ∆t. Therefore by the sampling theorem, the spectrum of the sampled timeseries Eq. (A7) can now also
be sampled without loss of information on N frequency samples spaced by ∆f = 1/T , denoted as fk = k∆f for
k = 0, . . . N − 1, resulting in the discrete Fourier transform (DFT)

x̃k ≡ x̃p(fk) = ∆t

N−1∑
j=0

xj e
−i2π jk/N , (A13)

where we used the fact that ∆t∆f = 1/N . The inverse operation is given by

xj = ∆f

N−1∑
k=0

x̃k e
i2π jk/N , (A14)

which can be obtained using the identity in Eq. (B4). Note that due to the discrete sampling in the frequency
domain, formally the corresponding time-domain series is now also periodic with period T , as from Eq. (A14) we see
that xj+N = xj .

The set of {x̃k}N−1
k=0 therefore fully determine the {xj}N−1

j=0 , which fully determine x̃p(f) at any frequency f via

Eq. (A7), namely

x̃p(f) =

N−1∑
k=0

x̃kDk(f) , (A15)

where the “Dirichlet” interpolation kernel is found as

Dk(f) ≡ e−iπ(1−1/N)δk(f) sinπδk(f)

N sin(πδk(f)/N)
(A16)

N�δk(f)
≈ e−iπδk(f) sinπδk(f)

πδk(f)
(A17)

=
sin 2πδk(f)

2πδk(f)
− i 1− cos 2πδk(f)

2πδk(f)
, (A18)

with

δk(f) ≡ T f − k =
f − fk

∆f
. (A19)

This is very analogous to the time-domain sinc-interpolation of Eq. (A12), but also differs in two respects: the ’sinc’
form is only obtained approximately in the large-N limit, and there is an additional complex phase factor e−iπδk(f)

that stems from the fact that the time DFT is defined with respect to the start time tj = 0, while the start-frequency
fk = 0 is really the mid-frequency of the original spectrum.

3. Time-shifting DFTs

A question of practical interest: given a DFT {x̃k}N−1
k=0 representing a function x(t), what is the DFT {ỹk}N−1

k=0 of

the time-shifted function y(t) ≡ x(t+ τ)? It is straightforward to see from Eq. (A1) that ỹ(f) = ei2πfτ x̃(f), but we
need to be careful when translating this back into the DFT, because ỹk ≡ ỹp(fk) = ỹ (f ′(fk)), i.e. we need to use the
physical frequencies f ′(fk) to compute the phase shifts, not fk directly. In other words we obtain

ỹk =

{
ei2πfk τ x̃k , for fk ≤ fs/2 ,
ei2π(fk−fs)τ x̃k , for fk > fs/2 ,

(A20)

so “negative” frequency bins are multiplied by an extra phase factor of e−i2πfsτ . This also ensures that a time-shifted
real-valued function remains real-valued.

12

Appendix B: Useful Fourier identities

From the well-known delta-family expression

∞∑
k=−∞

ei2π kx = δ(x) , for x ∈ [−1

2
,

1

2
] , (B1)

combined with the fact that the lhs is periodic with period x→ x+ 1, we can write

∞∑
k=−∞

ei2π kx =

∞∑
n=−∞

δ(x− n) , (B2)

and writing x = t/P , with the fact that δ(ax) = δ(x)/|a|, we obtain

1

P

∞∑
k=−∞

ei2π
k
P t =

∞∑
n=−∞

δ(t− nP) . (B3)

The finite DFT analalogue of this is the identity

1

N

N−1∑
k=0

ei2π jk/N =

∞∑
n=−∞

δj,nN , (B4)

which is easy to see by using the expression for the sum of a geometric series.

[1] P. Patel, X. Siemens, R. Dupuis, and J. Betzwieser, Phys. Rev. D. 81, 084032 (2010), 0912.4255.
[2] P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev. D. 58, 063001 (1998).
[3] C. E. Shannon, Proc. of the IRE 37, 10 (1949).

	Resampling FFT-based implementation of the F-statistic
	Abstract
	Characterizing the Resampling-FFT F-statistic implementation
	Algorithm
	Timing model
	Memory model for a multi-segment search
	Timing results based on ComputeFstatBenchmark[outdated]
	Testing new timing model against new (windowed-sinc) Resampling code
	Christians GCT timing results (24 runs) [outdated]

	General useful relations for resampling F-statistic
	Sampling theorem for band-limited functions
	Time-limited functions
	Time-shifting DFTs

	Useful Fourier identities
	References

