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Transient	vs	con,nuous	gravita,onal	
wave	signals	

•  Compact	binary	coalescence	gravita,onal	
wave	signals	are	strong	but	transient	

•  Cannot	perform	long	dura,on	studies	of	
par,cular	source	

•  Con3nuous	gravita,onal	wave	signals	are	
weak	but	persistent	enabling	long	term	
studies	of	a	source	
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Con,nuous	gravita,onal	waves	(1)	

•  Radia,on	generated	by	,me-varying	
quadrupolar	mass-moment	

	
•  Rapidly-rota,ng	neutron	star	with	equatorial	
ellip,city	(tri-axial	ellipsoid)	
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Con,nuous	gravita,onal	waves	(2)	
•  Con,nuous	GWs	are	nearly	monochroma,c	
sinusoidal	waves	

•  Plausible	breaking	strain	of	NS	ma_er:	
– Normal	nuclear	ma_er	
– Hybrid	(hadron-quark	core)	
– Quark	star	

•  Gravita,onal	wave	emission	strength	and	
frequency	depends	on	mechanism,	ex:	
–  Tri-axial	ellipsoid	
–  r-mode	fluid	oscilla,ons	
–  Free-precession	
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Why	we	search	for	con,nuous	
gravita,onal	waves	

•  Just	one	system	would	provide	a	rich	laboratory!	
– Neutron	star	equa,on	of	state?	
– Maximum	ellip,city?	
– Does	NS	have	exo,c	states	of	ma_er?	
– Maximum	mass	of	a	neutron	star?	
– How	fast	can	a	neutron	star	spin?	
– Other	tests	of	General	Rela,vity	
– NS	dynamics	
–  Implica,ons	for	popula,on	models	
–  Stochas,c	background	of	GWs	from	
spinning	neutron	stars	

Images:	
h_p://www.mpifr-bonn.mpg.de/research/fundamental/forces	
h_p://sci.esa.int/loj/49338-equa,on-of-state-for-neutron-stars/	 5	



Con,nuous	wave	search	strategies	

•  Targeted	search	(known	pulsars)	
– “Know	everything”	(in	principle)	

•  Directed	search	(Cas	A,	galac,c	center,	Sco	
X-1,	etc.)	
– “Know	something”	

•  All-sky	(“blind”)	search	
– “Know	nothing”	 Increasing	

computa,onal	
costs	

?	
Images:	NASA/STSci/ESA	 6	



Con,nuous	wave	analysis	
considera,ons	

•  GW	detectors	are	on	the	Earth:	Doppler	effect	
– Correct	for	the	rota,on	and	orbit	of	the	Earth	for	
every	sky	loca,on	you	want	to	observe	
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Electromagne,cally	observed	pulsars	

•  ATNF	catalog	(as	of	July	
2017):	623	pulsars	
spinning	faster	than	5	Hz	

•  Of	these,	258	are	in	
binary	systems	(>40%)	

•  Emission	of	gravita,onal	
waves	(>10	Hz)	is	in	the	
most	sensi,ve	region	of	
the	LIGO/Virgo	frequency	
band	

8	Source:	ATNF	pulsar	catalog	(July	2017)	
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Spin-down	limit	on	GW	emission	

•  Neutron	stars	spin	down	(lose	energy)	
•  Equate	rate	of	radiated	energy	to	the	energy	
of	a	gravita,onal	wave	from	tri-axial	ellipsoid	

•  Useful	benchmark	“spin-down	limit”	
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Recent	results:	O1	targeted	search	
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•  Targeted	search	of	200	known	
pulsars	in	first	Advanced	LIGO	
observing	run	

•  Results	for	8	pulsars	beat	the	
“spin-down”	limit	

•  Overall,	2x	be_er	than	ini,al	
LIGO/Virgo	results	

•  Crab	limit	at	0.2%	of	total	energy	
loss	

•  Vela	limit	at	1%	of	total	energy	
loss	

•  Smallest	ellip,city	limit:	
	
•  One	of	several	targeted	analyses	

" < 1.3⇥ 10�8

B.	P.	Abbo_,	et	al.	ApJ	839	12	 10	



Torque-balance	limit	

•  For	ac,vely	accre,ng	NS,	the	in-falling	ma_er	spins	up	
the	NS	<-->	GW	emission	spins	down	the	NS	

•  Assume	the	two	mechanisms	are	in	balance	for	a	tri-
axial	ellipsoid	NS	

•  Those	NS	accre,ng	most	rapidly	would	have	the	
largest	amplitude	GWs	

•  Brightest	(non-solar)	x-ray	source	is	Sco	X-1	
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Recent	results:	O1	searches	for	Sco	X-1	

•  Three	different	methods:	
–  Unmodeled	cross-correla,on	

(radiometer)	
–  Hidden	Markov	model	

tracking	of	spin-wandering	
signal	(Viterbi)	

–  Model-based	cross-
correla,on	(CrossCorr)	

•  Tightest	limits	nearly	reach	
the	torque-balance	limit	
near	100	Hz	

•  An,cipate	refined	limits	
with	addi,onal	data	/	
improved	detectors	/	
advancements	in	methods	

arXiv:1706.03119	[astro-ph.HE]	 12	



Recent	results:	O1	all-sky,	isolated	
neutron	star	search	

•  4	different	pipelines:	PowerFlux,	,me-domain	F-sta,s,c,	Sky	Hough	and	
Frequency	Hough	(+	comparison	to	F-stat	on	Einstein@Home)	

•  Pipelines	provide	consistent	results;	confidence	nothing	has	been	missed	
•  Tightest	limits																																						(circular	polariza,on)	near	170	Hz	

arXiv:XXXX.XXXXX	
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Recent	results:	O1	all-sky	isolated	
neutron	star	search	reach	

•  Ellip,city	of	a	NS	at	a	
given	distance	for	which	
circularly	polarized	
waves	could	be	detected	
using,	e.g.	PowerFlux	
algorithm	

•  Ex:	at	1	kpc,	can	exclude	
sources	emiwng	at	
																						with		

•  Tightest	constraint	
																										at		
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Recent	results:	O1	all-sky	isolated	low-
frequency	Einstein@home	search	

Powerflux O1 search
Time-domain F-stat O1 search
Sky Hough O1 search
Frequency Hough O1 search
Results from this search

•  Einstein@home	distributed	compu,ng	project	results	
•  20	–	100	Hz,	“deep	search”	(restricted	spindown	search	compared	with	other	

searches)	
•  Tightest	limits:																																							(marginalized	over	NS	orienta,on);	

above	55	Hz,	can	exclude	sources	with																						within	1	kpc	of	Earth	
arXiv:XXXX.XXXXX	
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Other	works	in	progress	

•  O1	analyses	in	the	pipeline:	
– Searches	for	SNRs	(plausible	NSs)	
– High-frequency	all-sky	searches	
– All-sky	searches	for	NSs	in	binary	systems	
– “Narrowband”	searches	for	GWs	from	known	
pulsars	

– “Spotlight”	direc,onal	searches	(e.g.	Orion	spur,	
galac,c	center)	

– Searches	for	non-tensoral	GWs	from	known	
pulsars		
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Outlook	

•  Currently	planned	LIGO	O2	observing	run	
longer	than	O1	(9	months	vs	4	months)	
– LIGO	site	hardware	changes	have	mi,gated	some	
of	the	combs	of	lines	present	in	O1	data	

– Sensi,vity	improvements,	especially	at	low	
frequency	at	LIGO	Livingston	

•  Inves,ga,ons	of	algorithm	enhancements,	
e.g.	narrowband,	Viterbi,	TwoSpect	search	
algorithms	
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See	talk	by	K.	Kawabe	
S.	Mastrogiovanni,	et	al.	CQG	34	135007	
E.	Goetz	and	K.	Riles,	CQG	33	085007	



Conclusions	
•  LIGO	and	Virgo	Collabora,ons	have	set	forth	a	
robust	program	to	detect	con,nuous	
gravita,onal	waves	

•  Detec,ng	one	source	would	provide	rich	
laboratory	

•  Cri,cally	important:	improved	detectors,	
sensi,ve	algorithms,	and	con,nued	collabora,on	
with	EM	partners	

•  No	detec,ons	yet,	but	we	are	searching	hard	
•  Non-detec,ons	are	probing	interes,ng	
astrophysics	
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