## LGO <br> ESD on CP and ITM Elliptical Baffle aperture H. Yamamoto

## ESD

 210x260mm

$$
\begin{aligned}
& \operatorname{TEM} 00(w, R)=\operatorname{Exp}\left(-\left(\frac{1}{w^{2}}+\frac{k}{2 R}\right) r^{2}\right) \\
& E 0=+\operatorname{TEM} 00(5.3 \mathrm{~cm},-1934 \mathrm{~m} / 1.45) \\
& E 1=-\operatorname{TEM} 00(5.3 \mathrm{~cm},+1934 \mathrm{~m} / 1.45) \\
& E 2=+\operatorname{TEM} 00(5.3 \mathrm{~cm},-1934 \mathrm{~m} / 1.45)
\end{aligned}
$$

ESD simplified as

1) 4 rings with 10 mm width and 10 mm spacing
2) Almost perfect reflector

## Field on BS reflected by arm+CP with ESD



_— 224 mm : current ITM elliptical baffle size ( $224 \times 274 \mathrm{~mm}$ )
—— 250 mm : region with little effects by ESD
------ 260mm : Beam splitter elliptical baffle size (210x260mm)
-.-.-. 266 mm : inner aperture size of ESD ring

## ITM elliptical baffle size : 260x260mm

- From BS side, nothing useful coming outside of 260 mm
- From arm side, outside of 266 mm are hidden by ESD
- Diffraction of reflected field by ESD makes field noisy outside of 260 mm
- Clipping noise, $\sim \exp \left(2 \mathrm{a}^{2} / \mathrm{w}^{2}\right)$, will be reduced by order of magnitude by increasing 224 mm to 260 mm


## Fields with BS baffle




