

Extreme gravity – 1

LIGO

DAWN III workshop Syracuse July 6th 2017

> Salvatore Vitale MIT

What is it that we are trying to do

- General relativity has passed the first tests performed with gravitational waves
 - ... beside all other tests

- In the future we can
 - Put better and better bounds
 - Find evidence for a deviation
 - Rank alternative theories?

Current limits from LIGO

- LIGO has already set significant bounds during the first and second science run
- Followed a two-pronged approach
 - Consistency checks (i.e. is the data consistent with GR and I don't care about what the real theory might be)
 - Test for specific theories

Consistency tests

- They answer questions such as:
 - Is the phase of the GW as one would expect within GR
 - Is the inference from the inspiral consistent with the merger and ringdown

^{7/6/17} LVC, PRL 118 221101

Consistency tests

- They answer questions such as:
 - Is the phase of the GW as one would expect within GR
 - Is the inference from the inspiral consistent with the merger and ringdown
 10 -0.5 0.0 0.5 1.0

^{7/6/17} LVC, PRL 118 221101

Consistency tests

- Advantages:
 - They do not require to have a model for the *true* theory of gravity

Issues:

4**GO**

- They do not immediately yield physical constraints

From generic to specific tests

• For many specific alternatives there is at least partial information on the expected waveforms

Theoretical Effect	Theoretical Mechanism	Theories	ppE b	Order	Mapping
Scalar Dipolar Radiation	Scalar Monopole Activation	EdGB [143, 145, 152, 153]	-7	-1PN	$\beta_{\rm EdGB}$ [143]
	BH Hair Growth	Scalar-Tensor Theories [60, 154]	-7	-1PN	$eta_{ m ST}$ [60, 154]
Anomalous Acceleration	Extra Dim. Mass Leakage	RS-II Braneworld [155, 156]	-13	-4PN	$\beta_{ m ED}$ [144]
	Time-Variation of G	Phenomenological [140, 157]	-13	-4PN	$\beta_{\dot{G}}$ [140]
Scalar Quadrupolar Radiation	Scalar Dipole Activation				
Scalar Dipole Force	due to	dCS [143, 158]	-1	+2PN	$eta_{ m dCS}$ [149]
Quadrupole Moment Deformation	Grav. Parity Violation				
Scalar/Vector Dipolar Radiation Modified Quadrupolar Radiation	Vector Field Activation		7	_1DN	$\rho(-1)$ $\rho(-1)$ [115]
	due to	EA [111, 112], Khronometric [113, 114]			$\rho_{\tilde{E}}$, ρ_{KG} [115]
	Lorentz Violation		-5	ULIN	ρ_{E}, ρ_{KG} [115]
Modified Dispersion Relation		Massive Gravity [159–162]	-3	+1PN	
		Double Special Relativity [163–166]	+6	+5.5PN	
		Extra Dim. [167], Horava-Lifshitz [168–170]	+9	+7PN	
	GW Propagation	gravitational SME $(d = 4)$ [82]	+3	+4PN	$eta_{ ext{MDR}}$
		gravitational SME $(d = 5)$ [82]	+6	+5.5PN	[148, 159]
		gravitational SME $(d = 6)$ [82]	+9	+7PN	
		Multifractional Spacetime [171–173]	3–6	4-5.5PN	

Cosmic Black-Hole Hair Growth and Quasar OJ287

M.W. Horbatsch¹ and C.P. Burgess^{1,2}

asymptotic spatial gradient in the scalar field. Most remarkably, the amount of scalar hair so induced is independent of the strength with which the scalar couples to matter. We argue that Jacobson's Miracle Hair-Growth Formula[©] implies, in particular, that an orbiting pair of black holes can radiate *dipole* radiation, provided only that the two black holes have different masses. Quasar OJ 287, situated at redshift $z \simeq 0.306$, has been argued to be a double black-

Generation and propagation

- Deviations from GR can affect the
 - Generation of gravitational waves (affect the Lagrangian)
 - Propagation of gravitational waves
- For the latter, magnitude of deviation increases with distance

Lorentz Invariance

• Starting with GW170104, the LVC has tested for modified dispersion relation (affects propagation)

 $E^2 = p^2 c^2 + A p^\alpha c^\alpha \quad \alpha > 0$ Ruledout Ruledout 10⁻¹⁹ $[\mathrm{peV}^{2-lpha}]$ AStill allowed 10-20 A > 0A < 00.0 0.5 2.5 3.0 3.5 1.0 .5 2.07/6/17 LVC, PRL 118 221101 α

4.0

Caveats

- For most (all?) the proposed alternatives to GR that affect generation:
 - Often only the leading orders are known
 - The non-GR terms are only known for the inspiral
 - No numerical simulations have ever been performed (or maybe 1, Manuela's talk)
- Estimates in the literature (Yunes+, others) use the inspiral phase only.

GO

- In spite of all caveats, it is useful to consider the leading order effect of the proposed alternative theories
- Associate each theory with the equivalent leading post-Newtonian (PN) order
- The lower the PN, the lower the relevant frequencies
 - It makes evident which part of the bandwidth is more useful
 - Often comes with physical intuition

CO

Example: dipole radiation

- In GR: no dipole
- In some alternative theories: extra scalar or vector fields can activate dipole radiation
 - E.g. scalar-tensor theories (requires neutron stars)
- Net effect:
 - Some energy is lost to dipole radiation
 - System inspirals faster than it would in GR
 - More important at high separation/low velocity

$$\dot{E}=\dot{E}_{\rm \tiny GR}+\delta\dot{E}_{\rm \tiny Dip}v^{-2}$$

Example: dipole radiation

^{7/6/17} Chamberlain+, 1704.08268

4GO

Example: dipole radiation

^{7/6/17} Chamberlain+, 1704.08268

The role of low frequency

Showing improvement in bounds w.r.t. aLIGO design for GW150914-like events

- For theories that enter at very low PN order, ET would do better due to ~1Hz sensitivity
- ET ~100 times better than CE at -4PN
- ET ~5-10 times better at -1PN

What's at -4PN?

- Theories that enter at -4PN are
 - Extra large (~um) dimension
 - Time varying G
- For both theories, LISA can do much better (due to lower frequency)
- Uncertain rates
 - IMBH, IMRI: zero evidence
 - EMRI: few-O(1000)/yrs (Babak+ 1703.09722)

Chamberlain+, 1704.08268

What's at -1PN?

• Dipole radiation

- Bounds from 3G instruments comparable with LISA
- Potentially, more sources than for LISA (can build cumulative posteriors)

Positive PN

- All other alternative theories enter at 0 or positive PN order
- CE and ET yield comparable bounds
- CE typically will have larger SNR

Extra polarizations

- Metric theories of gravity allow for up to 6 polarizations
 - 3 transverse

 Need a network to probe for extra polarizations

Are black holes black holes?

- Decoding the ringdown would
 - Help distinguish Kerr black holes from exotic objects (boson stars, gravstar..., Cardoso+ 1602.07309)
 - Help testing the no-hair theorem
 - Be really cool!!

- Extremely challenging with 2G, most likely need 3G
- A lot of ongoing work from the data analysis side

Realistically, what will be do?

 Very likely, we will setting up tighter and tighter bounds for the next years

- In the events of evidence that GR cannot explain the data
 - We can rank the *proposed* alternative theories and see which one matches the data best
 - We can estimate the characteristic parameters of that theory

What's missing?

Theory

NR

- TODAY, in nearly all cases we do NOT have:
 - Modification of merger and ringdown
 - Effect on spin precession
 - Numerical simulations
- (Even within GR):
 - Eccentricity

GO

- Better understanding of neutron star equation of state
- We will most likely need all of these when statistical uncertainties go down