EXTREME GRAVITY 2: A PERSPECTIVE ABOUT THE NUMERICAL RELATIVITY AND OUTLOOK

Manuela Campanelli Rochester Institute of Technology

LIGO DAWN 3, SYRACUSE, NY - JULY 6-7, 2017

•• 👧

CENTER FOR

OMPUTATIONAL Relativity and Gravitation

NUMERICAL RELATIVITY AND GRAVITATIONAL WAVES

"I have bet **these numerical relativists** that gravitational waves will be detected from black-hole collisions before their computations are sophisticated enough to simulate them. I expect to win..."

BBH Mergers, before *September 14, 2005*

Reference: K.S. Thorne, Spacetime Warps and the Quantum World: Speculations About the Future," in R.H. Price, ed., *The Future of Spacetime* (W.W. Norton, New York, 2002). 7/6/17

NUMERICAL RELATIVITY AND GRAVITATIONAL WAVES

"I have bet these numerical relativists that gravitational waves will be detected from black-hole collisions before their computations are sophisticated enough to simulate them. I expect to win..."

".... but hope to lose, because the simulation results are crucial to interpreting the observed waves."

Reference: K.S. Thorne, Spacetime Warps and the Quantum World: Speculations About the Future," in R.H. Price, ed., *The Future of* Spacetime (W.W. Norton, New York, 2002).

Abbott et al. (LVC) PRL. 116, – February 11, 2016

IT REQUIRED 50+ YEARS OF EFFORTS ...

NR is about solving the Einstein's Field Equations numerically **without any approximation**.

When they are written down to be explicitly coded up, GR equations have **hundreds of terms** depending on formulations, so it took 50+ years to the solution ...

First successful inspiral and merger [Pretorius 2005] - It can be done!
Moving punctures [Campanelli +2006, Baker+2006] - Enable many NR groups
Spectral Einstein Code (SXS) (inspiral) [Boyle+2006] (merger) [Scheel+2008]- Focus on NR accuracy

Two very different NR approaches: Spectral Methods and Moving Punctures

+12 years

Many groups and codes: SXS (SpEC), RIT (LazEv/ETK), GSFC(Hahndol/ETK), GT (Maya/ETK), AEI (CCATIE/ETK), Jena/Cardiff/Palma/Vienna (BAM), AEI/Palma (Llama/ETK), UIUC (Lean/ETK), etc

Building the NR-GW community:

- Numerical INJection Analysis (NINJA) NR-- DA project [Aylott+2009]
- NINJA-2 >NR-PN hybrids [Ajith+2012], blind-injections [Aasi+2014]
- NR-AR comparisons by different groups, NR-EOB [Hinder+2013]

12+ YEARS OF SOLID, HARD, WORK

NR is needed to compute accurate gravitational waveforms in the "late" Inspiral and Merger dynamics of BBHs.

- NR waveforms used to calibrate AR models:
 - Phenom models: B[Ajith+2009], C[Santamaria+2010], P [Hannam+2013], D[Khan+2015, Husa+2015]
 - EOB models (SEOBNR): v1 [Taracchini+,2012], v2 [Taracchini+,2013], v3 [Pan+,2013], v4 [Bohe+2016]
- Catalogs of NR waveforms (1000+):
 - SXS[Mroué +2013, Chu+2015], + surrogate models [Blackman+2017].
 - Gatech [Jani+2016],
 - RIT [Healy+2017]
 - NR Injection Infrastructure in LAL [Schmidt+2017]
- Direct comparison to observations (see many LVC papers)
 - Code comparison by SXS/RIT show overlap 99.9% [Lovelace+2016]
 - Parameter Estimation using NR [Lange+2017]
 - Final BH Remnant Properties [Healy +2017]

CATALOGS OF NUMERICAL RELATIVITY WAVEFORMS

NR/LSC teams assembled \sim 2000+ NR waveforms (including precessing ones):

8-dimensional parameter space: mass-ratio, spins, eccentricity

Integrated in the NR Injection Infrastructure in LAL [Schmidt+2017]

Image credits: Jacob Lange, RIT.

RIT [Healy+2017]: 200 (soon 500+); http://ccrg.rit.edu/~RITCatalog

Gatech [Jani+2016]: 452 waveforms; www.einstein.gatech.edu/catalog

HOW NR DO AT PRESENT?

- NR models for GW150914 show overlap 99.9% [Lovelace+2016]
- Even for very large spins of 0.99 [Zlochower+2016]
- Mismatch HR (0) [Lange+2017]: MR (3.90E-05) LR (5.27E-05)

NR FOLLOW-UPS OF GW170104:

Even for the low resolution, precessing, run the NR accuracy is 10 times better than residuals!

With medium, high resolutions runs, and improved extraction we can easily get an **extra factor x5**

Top panel shows the whitened data (with Livingston data shifted by -2.93ms and sign flipped), and the whitened strain from the two simulations overlaid. Bottom panel shows the **residuals, and the difference between the two simulations multiplied by 10 in grey.**

NR FOLLOW-UPS OF GW170104:

Even for the low resolution, precessing, run the NR accuracy is 10 times better than residuals!

With medium, high resolutions runs, and improved extraction we can easily get an **extra factor x5**

Top panel shows the whitened data (with Livingston data shifted by -2.93ms and sign flipped), and the whitened strain from the two simulations overlaid. Bottom panel shows the **residuals, and the difference between the two simulations multiplied by 10 in grey**.

TOTALLY INDEPENDENT APPROACHES AND CODES!!!

	LazEv	SpEC
Initial data		
Formulation of Einstein constraint	conformal method using Bowen-York	conformal thin sandwich [38, 40]
equations	solutions [37–39]	
Singularity treatment	puncture data [41]	quasi-equilibrium black-hole
		excision [42–44]
Numerical method	pseudo-spectral [45]	pseudo-spectral [46]
Achieving low orbital eccentricity	põst-Newtonian inspiral [47]	iterative eccentricity removal [48, 49]
Evolution		
Formulation of Einstein evolution	BSSNOK [50-52]	first-order generalized harmonic with
equations		constraint damping [11, 53-55]
Gauge conditions	evolved lapse and shift [56–58]	damped harmonic [59]
Singularity treatment	moving punctures [12, 13]	excision [60]
Outer boundary treatment	Sommerfeld	minimally-reflective,
		constraint-preserving [53, 61]
Discretization	high-order finite-differences [62, 63]	pseudo-spectral methods
Mesh refinement	adaptive mesh refinement [64]	domain decomposition with spectral
		adaptive mesh refinement [46, 59]

Image from [Lovelace+2016];

See also Larry Kidder's talk at IAP 2017 to appreciate the meaning of this!

NR ERRORS - WAVEFORM EXTRA

Perturbative 1/r

- NR source of errors, mostly due to finite extraction radius, resolution and sum over modes [Chu+2015]
- Extract information at finite radii:

Perturbative 1/r²

Med

Hiah

Infinite Resolution

0 0.0020.0040.0060.008 0.01 0.0120.014

M/R_{obs}

0.0395

0.039

0.0375

0.037

20.0385 ⊔ 0.038

- Newman-Penrose scalar: $\lim_{r \to \infty} r \psi_4 = \lim_{r \to \infty} r (\ddot{h}_+ i \ddot{h}_\times).$
- Extrapolate to infinity via perturbative expansion
- Now improved to error \leq 1E-4 [Nakano+2015] with new more accurate extraction to order 1/r² (including spins)

$$\begin{aligned} r\psi_{4}^{\ell m}|_{r=\infty} &= r\psi_{4}^{\ell m}(t,r) - \frac{(\ell-1)(\ell+2)}{2r} \int dt [r\psi_{4}^{\ell m}(t,r)] \\ &+ \frac{(\ell-1)(\ell+2)(\ell^{2}+\ell-4)}{8r^{2}} \int \int dt dt [r\psi_{4}^{\ell m}(t,r)] \end{aligned}$$

HIGHER WAVEFORM MODES

- Important for both PE [Lange+2017]
 - Bayesian method that directly compares GW data to NR simulations
 - Using I= 3 modes gain more information from the signal and can better constrain the parameters

• Also important to test GR: mode mixing unique to GR vs non-GR

Images credits: J. Lange, RIT.

HOW WELL NR DO AT EXTRACTING HIGHER WAVEFORM MODES

 $\langle h_{\ell m}^{L6} | h_{\ell m}^{L6} \rangle$ N100N110N120m $\mathbf{2}$ 9.820.88540.88630.88700 $\mathbf{2}$ 16.780.99050.99140.99082 2 0.99800.99800.9980927.74 1.023 0 0.78220.81460.83563 1.521 0.95170.95690.95823 $\mathbf{2}$ 0.99780.99800.998128.593 3 0.99270.99330.993342.170.05 0 0.36030.35810.35540.79100.83480.86160.17 1 $\mathbf{2}$ 0.90740.94250.95621.79 3 2.500.98440.99090.99384 0.98630.98860.990140.955 0.36380.40500.44580.01 0 0.422750.29940.36520.011 $\mathbf{2}$ 0.6108 0.61760.63920.14 553 0.78130.87090.91970.324 0.97050.98150.98792.490.955250.93150.96964.94

Image credits: Lange & O'Shaughenessy, RIT.

From SXS Catalog: https://arxiv.org/pdf/1304.6077.pdf

Table from Lovelace+2016];

- For comparable mass, $M_{tot}/M_{\odot} \gtrsim 50$ is covered by today's simulations, with ~20 orbits.
- As M_{tot}/M_{\odot} becomes smaller, the duration of the signal increase very quickly, and for Mtot \sim 30 and below, one needs hybrids.
- Some high-mass ratio waveforms and long waveforms are now available, but they are still quite computationally challenging, so one needs hybrids.
- Little on eccentricity (without or with spin), but expect a lot of work in progress in 5 years!

IF WE HAD 10HZ NOW

now include 10Hz

• For comparable mass, $M_{tot}/M_{\odot} \gtrsim 50$ is covered by today's simulations, with ~ 20 orbits.

- As M_{tot}/M_{\odot} becomes smaller, the duration of the signal increase very quickly, and for Mtot \sim 30 and below, one needs hybrids.
- Some high-mass ratio waveforms and long waveforms are now available, but they are still quite computationally challenging, so one needs hybrids.
- Little on eccentricity (without or with spin), but expect a lot of work in progress in 5 years!

SOME CORNERSTONE GR SIMULATIONS

Computational speed depends strongly on BHs parameters and length

- High q, high spin yet very expensive (~several months of running time)
- Long sims need higher resolution, too!
- Use of hybrid models and/or perturbative approaches.

Extreme mass ratios 1:100 with LazEv [Lousto et al, PRL 2010]

Very long NR simulations (350 orbits) with SpEC [Szilagyi et al, PRD, 201

FUTURE WORK IN NR SIMULATIONS OF BBH SYSTEMS

- Expand parameter space of catalogs
 - 8-dimensional parameter space: mass-ratio, spins, eccentricity
 - Need more waveforms for high q, high spin, eccentricity and many orbits
- Improve the accuracy and efficiency of simulations
 - High q, high spin, and many orbits are still too expensive
 - With better measurements, we need better accuracy
 - Exploit parallelism to improve scaling and run time, e.g. MPI vs task driven parallization
 - Develop new techniques: Discontinuous Galarkin methods in SpEC (SXS), Curvilinear coordinates (RIT/WVU), Multipatch methods (RIT).
- Getting some remaining details correct
 - definitions of masses and spins NR vs PN/EOB
 - waveform extraction
- Explore non GR theories

PROSPECTS OF NON-GR NR SIMULATIONS

- Precision tests of GR requires NR waveforms for BBH systems in non-GR theories
- Essentially, no inspiral-merger-ringdown NR waveforms available of same quality as for GR
- Too many theories, many are ill-posed, and each one requires significant work to explore!
 - A lot of old literature, some can be valuable ...
- Use some criteria to discard ill-posed theories, so we can discard them [Berti+ 2015]
 - Cosmology motivated nonGR theories (e.g. by metric theories) are the same as GR for BBH mergers
 - Scalar tensor gravity: BBH waveforms essentially indistinguishable [Healy+2011]
- Some theories are derived as low-energy limits of some (unknown) fundamental theory of quantum gravity, and as such carry some weight can we fix them instead? [Cayuso+ 2017] (see also Lehner talk at IAP2017)
 - Linearize dynamical Chern-Simons gravity (dGS) [Stein+,2017];
 - Einstein-Maxwell-Dilaton (EMD) [Hirschmann+2017]
 - f(R) theories casted as Klein-Gordon [Cao+2017]

• BBH simulations stunningly successful in past years

DISCUSSION/CONCLUSION

- More waveforms that can be carefully analyzed: some higher modes and precession
- A few "hard" simulations: high q, high spin, and many orbits
- Really complex codes, many error sources, but very successful code comparison!
- NR is essentially OK even when LIGO SNR will improve to \sim 100, but need to improve efficiency and accuracy to deal with high q, high spins and long waveforms.
- For SNR \sim 1000 (Voyager, 3G detectors, LISA, etc) we need more accuracy:
 - Waveform errors must be \sim 1E-6 ? What is good for PE, what is good for testing GR?
 - More accuracy, higher modes, needed to test GR vs non-GR
 - IMR BBH? High mass-ratio still largely unexplored!
 - Eccentricity? Totally unexplored at the accuracy needed, longer simulations to match with AR models!
- NR predictions from modified theories are challenging:
 - NR waveforms currently lacking, but some work started.
 - Need to encourage work and community building, to move faster!
 - A lot of old literature!!!